InAs/InAs$_{1-x}$Sb$_x$ superlattices on GaSb substrates: a promising alternative type-II superlattice infrared material system

Elizabeth H. Steenbergen*a,b, O. Orkun Cellek*b, Lu Ouyang*c, David J. Smith*c, Yong-Hang Zhang*b, S. Elhamri*d, D. Lubyshev*, Y. Qiu*, J.M. Fastenau*, A. W. K. Liu*

aAir Force Research Laboratory, 3005 Hobson Way, Wright Patterson, OH, USA 45433; bSchool of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ USA 85287
cDept. of Physics, Arizona State University, Tempe, AZ USA 85287
dDept. of Physics, University of Dayton, Dayton, OH USA 45469
eIQE Inc., Bethlehem, PA 18015, USA

BIOGRAPHY

Elizabeth H. Steenbergen: Elizabeth Steenbergen received her MS and PhD in Electrical Engineering at Arizona State University in May 2009 and 2012, respectively. She accepted the Science Foundation Arizona fellowship and the DOD SMART scholarship during graduate school and was awarded the Palais Outstanding Doctoral Student award in Electrical Engineering at ASU. Currently, she is at the Air Force Research Lab.

TECHNICAL ABSTRACT

As one of the many promising antimonide type-II superlattices (T2SLs), InAs/InAs$_{1-x}$Sb$_x$ T2SLs have been proposed for MWIR and LWIR light emitting diodes, lasers, and photodetectors. Although MWIR and LWIR InAs/InAs$_{1-x}$Sb$_x$ T2SL structures grown on InAs substrates and GaSb substrates were successfully demonstrated in the 1990’s, they were set aside as a potential photodetector material in favor of the InAs/Ga$_{1-x}$In$_x$Sb SL. Currently, the short minority carrier lifetime, \sim30 ns, of the InAs/Ga$_{1-x}$In$_x$Sb T2SL limits the detector performance as evidenced by higher than predicted dark currents and reduced quantum efficiencies.

Recent measurements using time-resolved photoluminescence (PL) on a 8-μm LWIR InAs/InAs$_{1-x}$Sb$_x$ T2SL show that the minority carrier lifetime is greater than 412 ns at 77 K, one order of magnitude greater than that of LWIR InAs/Ga$_{1-x}$In$_x$Sb SLs. The significant improvement in lifetime is mainly due to less Shockley-Read-Hall non-radiative recombination possibly due to the lack of Ga in the T2SL and is expected to improve the detector performance. Highlights of the detailed strain-balanced design, MBE growth, and structural and optical properties from high-resolution XRD, TEM, PL, time-resolved PL, and variable-temperature Hall measurements will be presented. The excellent quality of these T2SL samples exemplifies the promise of the InAs/InAs$_{1-x}$Sb$_x$ SLs for infrared device applications.

REFERENCES

Keywords: infrared, type-II superlattice, InAs, InAsSb, GaSb

*Elizabeth.Steenbergen@wpafb.af.mil; phone 1-937-656-9939