High Power Quantum Cascade Laser Arrays

V. Trinites*a, G.M. de Naurois*a, G. Maisons*a, M. Carras*a
*aIII-V lab, Campus polytechnique 1, Avenue Augustin Fresnel 91767 Palaiseau (France)

BIography

Trinite Virginie: is born in France in 1979. She graduated from the Ecole Centrale de Paris, Paris, France in 2003 and received her PhD. Degree in physics from the Ecole Doctorale de Ecole Polytechnique, Palaiseau, France in 2006. She now works as researcher at Thales Research & Technology, Palaiseau, France since 2007. Her PhD focuses on the theoretical modeling of titanium phases by ab initio calculations. Her current research focuses on theoretical modeling of semiconductor hetero-structures for QWIP and Quantum Cascade Laser devices, and more specifically on electronic transport properties.

TECHNICAL ABSTRACT

One of the crucial points to have a high power quantum cascade laser (QCL) is to manage correctly the thermal effects. There are two ways of improving the efficiency of the laser: design a better active zone less sensitive to the elevation of the temperature as it is be done in [6] or decrease the thermal resistance. We will introduce a new way to improve thermal dissipation by using μ-stripes array technology (see fig 1). These buried arrays are very appealing because they offer both lateral dissipation enhancement and beam quality control in large active region lasers.

Figure 1. SEM images of technological process steps. (a) After ICP dry etching. (b) After InP:Fe regrowth. (c) Final step, after upper cladding InP:Si regrowth and metallization.

We will show by standard finite element simulations that enhancement of the thermal resistance is very promising for this type of technology (see fig 2). We have obtained within this technology experimental thermal resistances of mounted devices down of 2 K/W. Comparison between experimental and theoretical results show excellent agreement allows us to make prediction on the possibility of this technology. Thermal resistance decreases with both number and...
width of emitters. Furthermore we have also shown in previous work phase-locking provided by evanescent coupling between adjacent ridges and single-mode emission up to 32 emitters.

We want to combine the µ-stripes approach with an improved design of the active region. We will show how we can predict the T_0 of a given design with a semi-classical Boltzmann-like model [1-3] (see fig 3). We assume thermalized carrier distribution in each sub-band, so that only the global populations of the sub bands enter in balance rate equations. We can take into account various types of scattering mechanisms, including stimulated emission and absorption of photons. The laser cavity is introduced by solving self-consistently the population of the electrons and the density of photons in the cavity. We have extended this model to take into account tunneling transport across the injection barrier as in [4]. We will show the comparison of this two approaches on the prediction of the T_0 of the QCLs. We will also show how this extension affects the prediction of the electronic temperature [5].

Fig2: Evolution of the thermal resistance with the total width of the active region for µ-stripe (blue and green) and standard broad laser (red). Comparison between experiment (point) and simulation (continuous lines) show excellent agreement

Fig 3: Evolution of threshold current with temperature from simulation (red cross) and fit with an exponential law (blue line). From fit of theoretical point we find a T_0 of 381 to be compared with 383 from experiment (design of ref [6])

Keywords: Thermal resistance, quantum cascade laser, modeling, electronic transport