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TECHNICAL ABSTRACT   
Quantum cascade lasers (QCLs) utilize intersubband (ISB) transitions to produce coherent light in the mid-infrared 

(MIR) and terahertz (THz) spectral regions, 3-300 µm.  Each cascade cell is a sequence of quantum wells and barriers, 
engineering an upper and lower laser level, where electrons can relax in a radiative transition.  The unipolar nature of the 
QCL allows great creativity and flexibility in the active region and waveguide design.  The material system is a key 
component when fabricating ISB devices.  InGaAs/InAlAs lattice-matched to InP and strain-compensated has achieved 
room-temperature, continuous-wave, watt-level power, and broad gain in the MIR [1,2,3].  The AlGaAs/GaAs material 
system has an adjustable conduction band offset from 0-450 meV, making it suitable for quantum well infrared 
photodetectors (QWIPs) and THz QCLs [4,5,6]. 

The InGaAs/GaAsSb material system, lattice-matched to InP, is an excellent candidate to replace the commonly 
used GaAs/AlGaAs material system for both MIR and THz lasers and detectors.  This material system has the potential 
to improve ISB devices by reducing the electron effective mass in the wells [7] and through the elimination of aluminum 
from the barriers, reducing the electron effective mass in the barriers as well, and the elimination of Al-oxide from the 
exposed surfaces, therefore simplifying subsequent post processing and/or regrowth.  The low effective mass for 
electrons leads to a spreading of the electron wave function, allowing for a thicker barrier, and a higher optical matrix 
element and thus improved laser gain.  The InP substrate is ideal for dielectric waveguiding in the MIR and for substrate 
lift off in THz double-metal waveguides.  A MIR QWIP and QCLs have been realized in the InGaAs/GaAsSb material 
system [8].  THz QCLs based on LO-phonon depletion have been produced and characterized [9], shown in Figure 1. 

We present recent progress in the design, growth, and fabrication of MIR and THz QCLs from the InGaAs/GaAsSb 
material system, including some features of these intersubband devices.   
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Figure 1. Scanning electron microscopy image of a double-metal InGaAs/GaAsSb THz QCL ridge and the laser output 
temperature dependence. The laser spectrum at 5 K is shown in the inset. 
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