Page 8 of 28:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (676 Items)

3.  Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors
E.K. Huang, A. Haddadi, G. Chen, A.M. Hoang, and M. Razeghi
Optics Letters, Vol. 38, no. 1, p. 22-24-- January 1, 2013 ...[Visit Journal]
A versatile dual-band detector capable of active and passive use is demonstrated using short-wave (SW) and midwave(MW) IR type-II superlattice photodiodes. A bilayer etch-stop scheme is introduced for back-side-illuminated detectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ~1 × 10-5 A/cm² for the ∼4.2 μm cutoff MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F∕2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using tint  30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. Excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)]
 
3.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
3.  Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD
D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)]
 
3.  Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal]
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
3.  Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes
M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi
SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal]
We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)]
 
3.  High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)]
 
3.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
3.  Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays
Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay
SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal]
In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in the understanding of its material properties which has lead to unprecedented development in the arena of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)]
 
3.  Photoluminescence linewidth narrowing in Yb-doped GaN and InGaN thin films
K. Dasari, J. Wang, W.M. Jadwisienczak, V. Dierolf, M. Razeghi, R. Palai
Journal of Luminescence Volume 209, May 2019, Pages 237-243-- January 14, 2019 ...[Visit Journal]
We report on photoluminescence (PL) properties of GaN, GaN:Yb, InGaN, and InGaN:Yb thin films grown on (0001) sapphire substrates by plasma assisted molecular beam epitaxy (MBE). X-ray diffraction pattern of the films confirms c-axis oriented growth. The concentration of Yb and In was obtained by X-ray photoelectron spectroscopy (XPS) and was found to be 5 (+/- 0.5) at.% and 30 (+/- 1.5) at.%, respectively. The GaN:Yb and InGaN:Yb thin films show a significant linewidth narrowing in PL spectra compared to GaN and InGaN thin films. This could be attributed to the reduction of the defect related non-radiative recombination paths and suppression of the structural defects and dislocations because of the in situ rare earth (Yb)-doping during the growth. The temperature dependent photoluminescence of GaN:Yb thin film follows the Varshni model, whereas InGaN:Yb film shows a complex S-shaped like behavior, which can be explained by the localization effect using the Band-Tail model. [reprint (PDF)]
 
3.  Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser
N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A 3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm). In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)]
 
3.  Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure
B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi
Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal]
InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)]
 
3.  Type-II superlattice-based heterojunction phototransistors for high speed applications
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics and Technology 108, 1033502-- May 2, 2020 ...[Visit Journal]
In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz. [reprint (PDF)]
 
3.  Photoluminescence characteristics of polar and nonpolar AlGaN/GaN superlattices
Z. Vashaei, C. Bayram, P. Lavenus, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 12, p. 121918-1-- September 20, 2010 ...[Visit Journal]
High quality Al0.2Ga0.8N/GaN superlattices (SLs) with various (GaN) well widths (1.6 to 6.4 nm) have been grown on polar c-plane and nonpolar m-plane freestanding GaN substrates by metal-organic chemical vapor deposition. Atomic force microscopy, high resolution x-ray diffraction, and photoluminescence (PL) studies of SLs have been carried out to determine and correlate effects of well width and polarization field on the room-temperature PL characteristics. A theoretical model was applied to explain PL energy-dependency on well width and crystalline orientation taking into account internal electric field for polar substrate. Absence of induced-internal electric field in nonpolar SLs was confirmed by stable PL peak energy and stronger PL intensity as a function of excitation power density than polar ones. [reprint (PDF)]
 
3.  Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation
Andrew Hood, Pierre-Yves Delaunay, Darin Hoffman, Binh-Minh Nguyen, Yajun Wei, Manijeh Razeghi, and Vaidya Nathan
Applied Physics Letters 90, 233513-- June 4, 2007 ...[Visit Journal]
Effective surface passivation of Type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths in the long-wavelength infrared is presented. A stable passivation layer, the electrical properties of which do not change as a function of the ambient environment nor time, has been prepared by a solvent-based surface preparation, vacuum desorption, and the application of an insulating polyimide layer. Passivated photodiodes, with dimensions ranging from 400×400 to 25×25 µm2, with a cutoff wavelength of ~11 µm, exhibited near bulk-limited R0A values of ~12 Ω·cm2, surface resistivities in excess of 104 Ω·cm, and very uniform current-voltage behavior at 77 K. [reprint (PDF)]
 
3.  High-power laser diodes based on InGaAsP alloys
M. Razeghi
Nature, Vol.369, p.631-633-- June 23, 1994 ...[Visit Journal]
HIGH-POWER, high-coherence solid-state lasers, based on dielectric materials such as ruby or Nd:YAG (yttrium aluminium garnet), have many civilian and military applications. The active media in these lasers are insulating, and must therefore be excited (or ‘pumped’) by optical, rather than electrical, means. Conventional gas-discharge lamps can be used as the pumping source, but semiconductor diode lasers are more efficient, as their wavelength can be tailored to match the absorption properties of the lasing material. Semiconducting AlGaAs alloys are widely used for this purpose, but oxidation of the aluminium and the spreading of defects during device operation limit the lifetime of the diodes3, and hence the reliability of the system as a whole. Aluminium-free InGaAsP compounds, on the other hand, do not have these lifetime-limiting properties. We report here the fabrication of high-power lasers based on InGaAsP (lattice-matched to GaAs substrates), which operate over the same wavelength range as conventional AlGaAs laser diodes and show significantly improved reliability. The other optical and electrical properties of these diodes are either comparable or superior to those of the AlGaAs system. [reprint (PDF)]
 
3.  Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain
N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi
Opt. Express 23, 21159-21164 -- August 10, 2015 ...[Visit Journal]
A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. [reprint (PDF)]
 
3.  Aluminum nitride films on different orientations of sapphire and silicon
K. Dovidenko, S. Oktyabrsky, J. Narayan, and M. Razeghi
Journal of Applied Physics79 (5)-- March 1, 1996 ...[Visit Journal]
The details of epitaxial growth and microstrictural characteristics of AlN films grown on sapphire (0001), (1012) and Si (100), (111) substrates were investigated using plan‐view and cross‐sectional high‐resolution transmission electron microscopy and x‐ray diffraction techniques. The films were grown by metalorganic chemical vapor deposition using TMA1+NH3+N2 gas mixtures. Different degrees of epitaxy were observed for the films grown on α‐Al2O3 and Si substrates in different orientations. The epitaxial relationship for (0001) sapphire was found to be (0001)AlN∥(0001)sap with in‐plane orientation relationship of [0110]AlN∥[1210]sap. This is equivalent to a 30° rotation in the basal (0001) plane. For (1012) sapphire substrates, the epitaxial relationship was determined to be (1120)AlN∥(1012)sap with the in‐plane alignment of [0001]AlN∥[1011]sap. The AlN films on (0001) α‐Al2O3 were found to contain inverted domain boundaries and a/3〈1120〉 threading dislocations with the estimated density of 1010 cm−2. The density of planar defects (stacking faults) found in AlN films was considerably higher in the case of (1012) compared to (0001) substrates. Films on Si substrates were found to be highly textured c axis oriented when grown on (111) Si, and c axis textured with random in‐plane orientation on (100) Si. The role of thin‐film defects and interfaces on device fabrication is discussed. [reprint (PDF)]
 
3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Novel Method for Reclaim/Reuse of Bulk GaN Substrates using Sacrifical ZnO Release Layers
A. Rajan, S. Sundaram, Y. El Gmili, P. L. Voss, K. Pantzas, T. Moudakir, A. Ougazzaden, D. J. Rogers, F. Hosseini Teherani, V. E. Sandana, P. Bove, K. Prior, R. McClintock & M. Razeghi
Proc. SPIE 8987, Oxide-based Materials and Devices V, 898719-- April 2, 2014 ...[Visit Journal]
Free-standing (0002)-oriented GaN substrates (f = 2”) were coated with 200 nm of ZnO and used as templates for the growth of GaN thin films. SEM and AFM revealed that such GaN layers had a relatively homogenous surface morphology with an RMS roughness (5 μm x 5 μm) of less than 4nm. XRD studies revealed strained ZnO growth on the GaN substrate and the reproduction of the substrate rocking curve for the GaN overlayers after only a hundred nm of growth, thus indicating that the GaN films had superior crystallographic quality compared to those grown on sapphire or ZnO/sapphire substrates. Quarter-wafer areas of GaN were removed from the GaN substrate (by selective chemical etching away of the ZnO interlayer). The expensive GaN substrates were then reclaimed/reused (without the need for polishing) for a second cycle of ZnO and GaN growth, which gave similar XRD, SEM, CL and AFM results to the first cycle. [reprint (PDF)]
 
3.  High Power Electrically Injected Mid-Infrared Interband Lasers Grown by LP-MOCVD
B. Lane and M. Razeghi
Journal of Crystal Growth 221 (1-4)-- December 1, 2000[reprint (PDF)]
 
3.  Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal]
We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage. [reprint (PDF)]
 
3.  State-of-the-art Type II Antimonide-based superlattice photodiodes for infrared detection and imaging
M. Razeghi, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, S. Abdollahi Pour, P. Manurkar, and S. Bogdanov
SPIE Proceedings, Nanophotonics and Macrophotonics for Space Environments II, San Diego, CA, Vol. 7467, p. 74670T-1-- August 5, 2009 ...[Visit Journal]
Type-II InAs/GaSb Superlattice (SL), a system of multi interacting quantum wells was first introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this low dimensional system has drawn a lot of attention for its attractive quantum mechanics properties and its grand potential for the emergence into the application world, especially in infrared detection. In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs and imaging applications which elevated the performances of Type-II InAs/GaSb superlattice photodetectors to a comparable level to the state-of-the-art Mercury Cadmium Telluride. We will present in this talk the current status of the state-of-the-art Type II superlattice photodetectors and focal plane arrays, and the future outlook for this material system. [reprint (PDF)]
 
3.  Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime
K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim
Applied Physics Letters 71 (6)-- August 11, 1997 ...[Visit Journal]
Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. [reprint (PDF)]
 
3.  Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures
W. Pan, D. Shahar, D.C. Tsui, H.P. Wei, and M. Razeghi
Physical Review B 55 (23)-- June 15, 1997 ...[Visit Journal]
We report a temperature- and current-scaling study of the quantum Hall liquid-to-insulator transition in an In1-xGaxAs/InP heterostructure. When the magnetic field is at the critical field Bc, ρxx=0.86h/e². Furthermore, the transport near Bc scales as |B- Bc|T with κ=0.45±0.05, and as |B- Bc|I-b with b=0.23±0.05. The latter can be due to phonon emission in a dirty piezoelectric medium, or can be the consequence of critical behavior near Bc, within which z=1.0±0.1 and ν=2.1±0.3 are obtained from our data. [reprint (PDF)]
 
3.  Comparison of Trimethylgallium and Triethylgallium for the Growth of GaN
A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. Mitchel, and H.R. Vydyanath
Applied Physics Letters 71 (22)-- December 1, 1997 ...[Visit Journal]
GaN films grown by low-pressure metalorganic chemical vapor deposition using trimethylgallium and triethylgallium as gallium precursors are compared. The films were characterized by x-ray diffraction, Hall effect, photoluminescence, secondary ion mass spectroscopy, and etch pit density measurements. GaN layers grown using triethylgallium exhibited superior electrical and optical properties and a lower carbon impurity concentration. [reprint (PDF)]
 

Page 8 of 28:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (676 Items)