Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

2.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
2.  Monolithic, steerable, mid-infrared laser realized with no moving parts
Slivken S, Wu D, Razeghi M
Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal]
The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)]
 
2.  Recent performance records for mid-IR quantum cascade lasers
M. Razeghi; Y. Bai; S. Slivken; S. Kuboya; S.R. Darvish
Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications, 2009. TERA-MIR International Workshop [5379656], (2009) -- November 9, 2009 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave operation is brought to 17%. Peak output power from a broad area (400 μm x 3 mm) device gives 120 W output power in pulsed mode operation at room temperature. Using a single-well-injector design, specifically made for low temperature operation, a record wall plug efficiency of 53% is demonstrated at 40 K. [reprint (PDF)]
 
2.  Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD
V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal]
NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)]
 
2.  Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi
Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021) ...[Visit Journal]
We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. [reprint (PDF)]
 
2.  Growth of InAsSb Alloys on GaAs and Si Substrates for Uncooled Infrared Photodetector Applications
J.D. Kim, H. Mohseni, J.S. Wojkowski, J.J. Lee and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
In this paper, we report on the growth and characterization of InAsSb alloys on GaAs and Si substrates for uncooled infrared photodetector applications. The fabrication and characterization of photodetectors from the grown layers are also reported. The photovoltaic and photoconductive devices were grown on (100) GaAs and Si substrates, respectively, using molecular beam epitaxy (MBE). The composition of InAs>sub>1-xSbx layers was 0.95 in both cases and cut-off wavelength of 7-8 μm has been obtained. At 300 K, the photovoltaic detectors on GaAs substrates resulted in a sharp cut-off wavelength of 7.5 μm with a peak responsivity as high as 0.32 V/W at 6.5 micrometer. For the photoconductive detectors on Si substrates, cut-off wavelength of 8 μm has been observed with a responsivity of 6.3x10-2 V/W at 7 μm under an electric field of 420 V/m. [reprint (PDF)]
 
2.  Aluminum gallium nitride short-period superlattices doped with magnesium
A. Saxler, W.C. Mitchel, P. Kung and M. Razeghi
Applied Physics Letters 74 (14)-- April 9, 1999 ...[Visit Journal]
Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short-period superlattice structures instead of bulk-like AlGaN:Mg. [reprint (PDF)]
 
2.  InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging
S. Tsao, H. Lim, H. Seo, W. Zhang and M. Razeghi
IEEE Sensors Journal, Vol. 8, No. 6, p. 936-941-- June 1, 2008 ...[Visit Journal]
We report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metalorganic chemical vapor depositon. The detectivity was 6 x 1010cm·Hz1/2·W-1 at 150 K and a bias of 5 V with a peak detection wavelength around 4.0 micron and a quantum efficiency of 48%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature. A 320 x 256 middle wavelength infrared focal plane array operating at temperatures up to 200 K was also demonstrated. The focal plane array had 34 mA/W responsivity, 1.1% conversion efficiency, and noise equivalent temperature difference of 344 mK at 120 K operating temperature. [reprint (PDF)]
 
2.  Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature
M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang
Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal]
We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)]
 
2.  High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144-- April 7, 2016 ...[Visit Journal]
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)]
 
2.  Broadband monolithically-tunable quantum cascade lasers
Wenjia Zhou, Ryan McClintock, Donghai Wu, Steven Slivken, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400A-- January 26, 2018 ...[Visit Journal]
Mid-infrared lasers, emitting in the spectral region of 3-12 μm that contain strong characteristic vibrational transitions of many important molecules, are highly desirable for spectroscopy sensing applications. High efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning, which is critical for spectroscopy applications, is still largely relying on incorporating external gratings, which have stability issues. Here, we demonstrate the development a monolithic, widely tunable quantum cascade laser source emitting between 6.1 and 9.2 μm through an on-chip integration of a sampled grating distributed feedback tunable laser array with a beam combiner. A compact tunable laser system was built to drive the individual lasers within the array and coordinate the driving of the laser array to produce desired wavelength. A broadband spectral measurement (520cm-1) of methane shows excellent agreement with Fourier transform infrared spectrometer measurement. Further optimizations have led to high performance monolithic tunable QCLs with up to 65 mW output while delivering fundamental mode outputs. [reprint (PDF)]
 
2.  Molecular Beam Epitaxial Growth of High Quality InSb
E. Michel, G. Singh, S. Slivken, C. Besikci, P. Bove, I. Ferguson, and M. Razeghi
Applied Physics Letters 65 (26)-- December 26, 1994 ...[Visit Journal]
In this letter we report on the growth of high quality InSb by molecular beam epitaxy that has been optimized using reflection high energy electron diffraction. A 4.8 µm InSb layer grown on GaAs at a growth temperature of 395 °C and a III/V incorporation ratio of 1:1.2 had an x-ray rocking curve of 158 arcsec and a Hall mobility of 92,300 cm²·V−1 at 77 K. This is the best material quality obtained for InSb nucleated directly onto GaAs reported to date. [reprint (PDF)]
 
2.  Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature
Z. Vashaei, C. Bayram and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal]
GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)]
 
2.  High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends
M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park
Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001 ...[Visit Journal]
In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)]
 
2.  p-doped GaAs/Ga0.51In0.49P quantum well intersub-band photodetectors
J. Hoff, X. He, M. Erdtmann, E. Bigan, M. Razeghi, and G.J. Brown
Journal of Applied Physics 78 (3)-- August 1, 1995 ...[Visit Journal]
Lattice‐matched p-doped GaAs–Ga0.51In0.49P quantum well intersub‐band photodetectors with three different well widths have been grown on GaAs substrates by metal‐organic chemical‐vapor deposition and fabricated into mesa structures. The photoresponse cutoff wavelength varies between 3.5 and 5.5 μm by decreasing the well width from 50 down to 25 Å. Dark current measurements as a function of temperature reveal activation energies for thermionic emission that closely correspond to measured cutoff wavelengths. Experimental results are in reasonable agreement with Kronig–Penney calculations. [reprint (PDF)]
 
2.  Miniaturization: enabling technology for the new millennium
M. Razeghi and H. Mohseni
SPIE International Conference on Solid State Crystals, Zakopane, Poland, -- April 1, 2001 ...[Visit Journal]
The history of semiconductor devices has been characterized by a constant drive toward lower dimensions in order to increase integration density, system functionality and performance. However, this is still far from being comparable with the performance of natural systems such as human brain. The challenges facing semiconductor technologies in the millennium will be to move toward miniaturization. The influence of this trend on the quantum sensing of infrared radiation is one example that is elaborated here. A new generation of infrared detectors has been developed by growing layers of different semiconductors with nanometer thicknesses. The resulted badgap engineered semiconductor has superior performance compared to the bulk material. To enhance this technology further, we plan to move from quantum wells to quantum wire and quantum dots. [reprint (PDF)]
 
2.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
2.  Photoluminescence linewidth narrowing in Yb-doped GaN and InGaN thin films
K. Dasari, J. Wang, W.M. Jadwisienczak, V. Dierolf, M. Razeghi, R. Palai
Journal of Luminescence Volume 209, May 2019, Pages 237-243-- January 14, 2019 ...[Visit Journal]
We report on photoluminescence (PL) properties of GaN, GaN:Yb, InGaN, and InGaN:Yb thin films grown on (0001) sapphire substrates by plasma assisted molecular beam epitaxy (MBE). X-ray diffraction pattern of the films confirms c-axis oriented growth. The concentration of Yb and In was obtained by X-ray photoelectron spectroscopy (XPS) and was found to be 5 (+/- 0.5) at.% and 30 (+/- 1.5) at.%, respectively. The GaN:Yb and InGaN:Yb thin films show a significant linewidth narrowing in PL spectra compared to GaN and InGaN thin films. This could be attributed to the reduction of the defect related non-radiative recombination paths and suppression of the structural defects and dislocations because of the in situ rare earth (Yb)-doping during the growth. The temperature dependent photoluminescence of GaN:Yb thin film follows the Varshni model, whereas InGaN:Yb film shows a complex S-shaped like behavior, which can be explained by the localization effect using the Band-Tail model. [reprint (PDF)]
 
2.  The new oxide paradigm for solid state ultraviolet photodetectors
D. J. Rogers, P. Bove, X. Arrateig, V. E. Sandana, F. H. Teherani, M. Razeghi, R. McClintock, E. Frisch, S. Harel,
Proceedings Volume 10533, Oxide-based Materials and Devices IX; 105331P-- March 22, 2018 ...[Visit Journal]
The bandgap of wurzite ZnO layers grown on 2 inch diameter c-Al2O3 substrates by pulsed laser deposition was engineered from 3.7 to 4.8 eV by alloying with Mg. Above this Mg content the layers transformed from single phase hcp to mixed hcp/fcc phase before becoming single phase fcc above a bandgap of about 5.5 eV. Metal-Semiconductor-Metal (MSM) photodetectors based on gold Inter-Digitated-Transducer structures were fabricated from the single phase hcp layers by single step negative photolithography and then packaged in TO5 cans. The devices gave over 6 orders of magnitude of separation between dark and light signal with solar rejection ratios (I270 : I350) of over 3 x 105 and dark signals of 300 pA (at a bias of −5V). Spectral responsivities were engineered to fit the “Deutscher Verein des Gas- und Wasserfaches” industry standard form and gave over two decade higher responsivities (14 A/W, peaked at 270 nm) than commercial SiC based devices. Homogeneous Ga2O3 layers were also grown on 2 inch diameter c-Al2O3 substrates by PLD. Optical transmission spectra were coherent with a bandgap that increased from 4.9 to 5.4 eV when film thickness was decreased from 825 to 145 nm. X-ray diffraction revealed that the films were of the β-Ga2O3 (monoclinic) polytype with strong (−201) orientation. β-Ga2O3 MSM photodetectors gave over 4 orders of magnitude of separation between dark and light signal (at −5V bias) with dark currents of 250 pA and spectral responsivities of up to 40 A/W (at -0.75V bias). It was found that the spectral responsivity peak position could be decreased from 250 to 230 nm by reducing film thickness from 825 to 145 nm. This shift in peak responsivity wavelength with film thickness (a) was coherent with the apparent bandgap shift that was observed in transmission spectroscopy for the same layers and (b) conveniently provides a coverage of the spectral region in which MgZnO layers show fcc/hcp phase mixing. [reprint (PDF)]
 
2.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
2.  High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 µm
Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow and V. Nathan
Applied Physics Letters, 86 (9)-- February 28, 2005 ...[Visit Journal]
We report the most recent result in the area of type-II InAs/GaSb superlattice photodiodes that have a cutoff wavelength around 7 µm at 77 K. Superlattice with a period of 40 Å lattice matched to GaSb was realized using GaxIn1–x type interface engineering technique. Compared with significantly longer period superlattices, we have reduced the dark current density under reverse bias dramatically. For a 3 µm thick structure, using sulfide-based passivation, the dark current density reached 2.6×10–5 A/cm2 at –3 V reverse bias at 77 K. At this temperature the photodiodes have R0A of 9300 Ω·cm2 and a thermally limited zero bias detectivity of 1×1012 cm·Hz½/W. The 90%–10% cutoff energy width was only 16.5 meV. The devices did not show significant dark current change at 77 K after three months storage in the atmosphere. [reprint (PDF)]
 
2.  Phase-locked, high power, mid-infrared quantum cascade laser array
W. Zhou, S. Slivken, and M. Razeghi
Applied Physics Letters 112, 181106-- May 4, 2018 ...[Visit Journal]
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array. [reprint (PDF)]
 
2.  Use of Sacrificial Zinc Oxide Template Layers for Epitaxial Lift-Off of Yttria-Stabilised Zirconia Thin Films
D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi
Proc. of SPIE 11687, 116872C (2021) ...[Visit Journal]
275 nm-thick Yttria-stabilised zirconia (YSZ) layers were grown on 240 nm-thick epitaxial (0002)-oriented ZnO buffer layers on c-sapphire substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) studies revealed high quality epitaxial growth with the YSZ having a preferential (111) orientation and a root mean square surface roughness of 1.4 nm over an area of 10 um x 10 um. The YSZ top surface was then temporary bonded to an Apiezon W wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer and release of the YSZ from the sapphire substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ, however, which was probably due to tensile epitaxial strain release. [reprint (PDF)]
 
2.  Quantum cascade lasers that emit more light than heat
Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi
Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal]
For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)]
 
2.  High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors
Stephen M. Johnson; Emily Dial; M. Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal]
Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers (QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)]
 

Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)