Page 7 of 7:  Prev << 1 2 3 4 5 6 7    (157 Items)

1.  High Performance Quantum Cascade Lasers at λ ~ 6 μm
M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David
Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal]
This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)]
 
1.  High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices
Jiakai Li; Arash Dehzangi; Donghai Wu; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128813-- January 31, 2020 ...[Visit Journal]
A two terminal short wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb on GaSb substrate are designed fabricated and presented. With the base thickness of 40 nm, the device exhibited 100% cut-off wavelengths of ~2.3 μm at 300K. The saturated peak responsivity value is of 325.5 A/W at 300K, under front-side illumination without any anti-reflection coating. A saturated optical gain at 300K was 215 a saturated dark current shot noise limited specific detectivity of 4.9×1011 cm·Hz½/W at 300 K was measured. Similar heterojunction phototransistor structure was grown and fabricated with different method of processing for high speed testing. For 80 μm diameter circular diode size under 20 V applied reverse bias, a −3 dB cut-off frequency of 1.0 GHz was achieved, which showed the potential of type-II superlattice based heterojunction phototransistors to be used for high speed detection. [reprint (PDF)]
 
1.  Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors
Arash Dehzangi, Quentin Durlin, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Semiconductor Science and Technology, 34(6), 06LT01-- May 25, 2019 ...[Visit Journal]
Different passivation techniques are investigated for reducing leakage current in small pixel (down to 9 μm) heterostructure photodetectors designed for the short-wavelength infrared range. Process evaluation test chips were fabricated using the same process as for focal plane arrays. Arrays of small photodetectors were electrically characterized under dark conditions from 150 K to room temperature. In order to evaluate the leakage current, we studied the relation between the inverse of dynamic resistance at −20 mV and zero bias and perimeter over area P/A ratio as the pixel size is scaled down. At 150 K, leakage current arising from the perimeter dominates while bulk leakage dominates at room temperature. We find that in shortwave devices directly underfilling hybridized devices with a thermoset epoxy resin without first doing any additional passivation/protection after etching gives the lowest leakage with a surface resistance of 4.2 × 109 and 8.9 × 103 Ω· cm−1 at 150 and 300 K, for −20 mV of bias voltage, respectively. [reprint (PDF)]
 
1.  InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection
M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal]
We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)]
 
1.  Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008 ...[Visit Journal]
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible. [reprint (PDF)]
 
1.  High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si
Steven Slivken and Manijeh Razeghi
Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal]
We report on the realization of an InP-based long wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power (>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)]
 
1.  Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and fabrication
M. Razeghi
special issue of Microelectronics Journal 30 (10)-- October 1, 1999[reprint (PDF)]
 

Page 7 of 7:  Prev << 1 2 3 4 5 6 7    (157 Items)