About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 6 of 7: Prev << 1 2 3 4 5 6 7 >> Next (160 Items)
1. | AlGaN-based deep-ultraviolet 320 x 256 focal plane array E. Cicek, Z. Vashaei, E.K. Huang, R. McClintock and M. Razeghi OSA Optics Letters, Vol. 37, No. 5, p. 896-898-- March 1, 2012 ...[Visit Journal] We report the synthesis, fabrication, and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1−xN–based detectors, fully realized within our research laboratory. We implemented a pulse
atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition AlxGa1−xN layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak
detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ∼285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA∕W, which corresponds to an EQE of ∼37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
1. | High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi Applied Physics Letters, 84 (3)-- January 19, 2004 ...[Visit Journal] We report cw operation of buried heterostructure quantum-cascade lasers (λ=6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 333 K (60 °C). The high cw optical output powers of 446 mW at 293 K, 372 mW at 298 K, and 30 mW at 333 K are achieved with threshold current densities of 2.19, 2.35, and 4.29 kA/cm2 respectively, for a high-reflectivity-coated, 9-µm-wide and 3-mm-long laser [reprint (PDF)] |
1. | AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89% E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi Appl. Phys. Lett. 103, 191108 (2013)-- November 5, 2013 ...[Visit Journal] We report on high performance AlxGa1−xN-based solar-blind ultraviolet photodetector (PD) array grown on sapphire substrate. First, high quality, crack-free AlN template layer is grown via metalorganic chemical vapor deposition. Then, we systematically optimized the device design and material doping through the growth and processing of multiple devices. After optimization, uniform and solar-blind operation is observed throughout the array; at the peak detection wavelength of 275 nm, 729 μm² area PD showed unbiased peak external quantum efficiency and responsivity of ∼80% and ∼176 mA/W, respectively, increasing to 89% under 5 V of reverse bias. Taking the reflection loses into consideration, the internal quantum efficiency of these optimized PD can be estimated to be as high as ∼98%. The visible rejection ratio measured to be more than six orders of magnitude. Electrical measurements yielded a low-dark current density: <2 × 10−9 A/cm², at 10 V of reverse bias. [reprint (PDF)] |
1. | High-Power CW Mid-IR Quantum Cascade Lasers J.R. Meyer, W.W. Bewley, J.R. Lindle, I. Vurgaftman, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi SPIE Conference, Jose, CA, -- January 22, 2005 ...[Visit Journal] We report the cw operation of quantum cascade lasers that do not require cryogenic cooling and emit at λ = 4.7-6.2 µm. At 200 K, more than 1 W of output power is obtained from 12-µm-wide stripes, with a wall-plug efficiency (ηwall) near 10%. Room-temperature cw operation has also been demonstrated, with a maximum output power of 640 mW (ηwall = 4.5%) at 6 µm and 260 mW (ηwall = 2.3%) at 4.8 µm. Far-field characterization indicates that whereas the beam quality remains close to the diffraction limit in all of the tested lasers, in the devices emitting at 6.2 µm the beam tends to steer by as much as 5-10° degrees in either direction with varying temperature and pump current. [reprint (PDF)] |
1. | Avalanche Photodetector Based on InAs/InSb Superlattice Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal] This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)] |
1. | Solar-Blind Deep UV Avalanche Photodetectors Using Reduced Area Epitaxy Lakshay Gautam , Junhee Lee, Michael Richards, and Manijeh Razeghi , Lakshay Gautam, Manijeh Razeghi, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 6, 10.1109/JQE.2023.3325254 ...[Visit Journal] We report high gain avalanche photodetectors operating in the deep UV wavelength regime. The high gain was
leveraged through reduced area epitaxy by patterning AlN on
Sapphire substrate. This helps in a substantial reduction of crack
formation due to overgrowth on individually isolated AlN mesas.
Reproducible gain on the order of 105 was reported for multiple
diodes in different areas of 320 × 256 focal plane array. [reprint (PDF)] |
1. | Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal] We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow
linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW.
The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)] |
1. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
1. | Recent progress of widely tunable, CW THz sources based QCLs at room temperature Manijeh Razeghi Terahertz Science and Technology, Vol.10, No.4, pp. 87-151-- December 7, 2017 ...[Visit Journal] The THz spectral region is of significant interest to the scientific community, but is one of the hardest regions to access with conventional technology. A wide range of compelling new applications are initiating a new revolution in THz technology, especially with regard to the development of compact and versatile devices for THz emission and detection. In this article, recent advances with regard to III-V semiconductor optoelectronics are explored with emphasis on how these advances will lead to the next generation of THz component technology [reprint (PDF)] |
1. | Room temperature operation of InxGa1-xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD D. H. Wu, Y. Y. Zhang, and M. Razeghi Applied Physics Letters 112, 111103-- March 14, 2018 ...[Visit Journal] We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2, peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with calculated specific detectivity of 2.4×109 cm.Hz1/2/W at 3.81 μm. [reprint (PDF)] |
1. | Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi Journal of Applied Physics 98-- October 15, 2005 ...[Visit Journal] We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. [reprint (PDF)] |
1. | Kinetics of photoconductivity in n-type GaN photodetector P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi Applied Physics Letters 67 (25)-- December 18, 1995 ...[Visit Journal] High-quality ultraviolet photoconductive detectors have been fabricated using GaN layers grown by low-pressure metalorganic chemical vapor deposition on (11⋅0) sapphire substrates. The spectral responsivity remained nearly constant for wavelengths from 200 to 365 nm and dropped sharply by almost three orders of magnitude for wavelengths longer than 365 nm. The kinetics of the photoconductivity have been studied by the measurements of the frequency‐dependent photoresponse and photoconductivity decay. Strongly sublinear response and excitation‐dependent response time have been observed even at relatively low excitation levels. This can be attributed to redistribution of the charge carriers with increased excitation level. [reprint (PDF)] |
1. | Room temperature continuous wave THz frequency comb based on quantum cascade lasers M. Razeghi; Q. Y. Lu; F. H. Wang; D. H. Wu; S. Slivken Proc. SPIE 11124, Terahertz Emitters, Receivers, and Applications X, 1112407-- September 6, 2019 ...[Visit Journal] Frequency combs, spectra of phase-coherent equidistant lines, have revolutionized time and frequency metrology. The recently developed quantum cascade laser (QCL) comb has exhibits great potential with high power and broadband spectrum. However, in the terahertz (THz) range, cryogenic cooling has to be applied for THz QCL combs. We report a room temperature THz frequency comb at 3.0 THz based on difference-frequency generation from a mid-IR QCL comb. A largely detuned distributed-feedback grating is integrated into the QCL cavity to provide the single mode operation as well as enhanced spatial hole-burning effect for multimode comb operation. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb provides a new solution to chip-based high-speed high-resolution THz spectroscopy with compact size at room temperature. [reprint (PDF)] |
1. | Type–II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor Arash Dehzangi, Ryan McClintock, Abbas Haddadi, Donghai Wu, Romain Chevallier, Manijeh Razeghi Scientific Reports volume 9, Article number: 5003 -- March 21, 2019 ...[Visit Journal] Visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor based on type–II InAs/AlSb/GaSb superlattices have been demonstrated. The photodetectors are designed to have a 100% cut-off wavelength of ~2.4 μm at 300K, with sensitivity down to visible wavelengths. The photodetectors exhibit room–temperature (300K) peak responsivity of 0.6 A/W at ~1.7 μm, corresponding to a quantum efficiency of 43% at zero bias under front–side illumination, without any anti–reflection coating where the visible cut−on wavelength of the devices is <0.5 µm. With a dark current density of 5.3 × 10−4 A/cm² under −20 mV applied bias at 300K, the photodetectors exhibit a specific detectivity of 4.72 × 1010 cm·Hz½W-1. At 150K, the photodetectors exhibit a dark current density of 1.8 × 10−10 A/cm² and a quantum efficiency of 40%, resulting in a detectivity of 5.56 × 1013 cm·Hz½/W [reprint (PDF)] |
1. | Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers Manijeh Razeghi, Arash Dehzangi, Donghai Wu, Ryan McClintock, Yiyun Zhang, Quentin Durlin, Jiakai Li, Fanfei Meng Proc. SPIE Defense + Commercial Sensing,Infrared Technology and Applications XLV, 110020G -- May 7, 2019 ...[Visit Journal] Third generation of infrared imagers demand performances for higher detectivity, higher operating temperature, higher resolution, and multi-color detection all accomplished with better yield and lower manufacturing costs. Antimonidebased gap-engineered Type-II superlattices (T2SLs) material system is considered as a potential alternative for MercuryCadmium-Telluride (HgCdTe) technology in all different infrared detection regimes from short to very long wavelengths for the third generation of infrared imagers. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. We will present the most recent research results on Antimonide-based gap-engineered Type-II superlattices, such as highperformance dual-band SWIR/MWIR photo-detectors and focal plane arrays for different infrared regimes, toward the third generation of infrared imaging systems at the Center for Zuantum Devices. Comparing metal-organic chemical
vapor deposition (MOCVD), vs molecular beam epitaxy (MBE).
[reprint (PDF)] |
1. | Room temperature terahertz semiconductor frequency comb Quanyong Lu, Feihu Wang, Donghai Wu, Steven Slivken & Manijeh Razeghi Nature Communications 10, 2403-- June 3, 2019 ...[Visit Journal] A terahertz (THz) frequency comb capable of high-resolution measurement will significantly
advance THz technology application in spectroscopy, metrology and sensing. The recently
developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great
potentials with high power and broadband spectrum. Here, we report a room temperature
THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation
from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR
comb with an integrated mid-IR single mode based on distributed-feedback grating without
using external optical elements. The grating Bragg wavelength is largely detuned from the
gain peak to suppress the grating dispersion and support the comb operation in the high gain
spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it
with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb
will find applications to room temperature chip-based THz spectroscopy. [reprint (PDF)] |
1. | Type-II superlattice-based heterojunction phototransistors for high speed applications Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics and Technology 108, 1033502-- May 2, 2020 ...[Visit Journal] In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz.
[reprint (PDF)] |
1. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal] We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)] |
1. | Overview of Quantum Cascade Laser Research at the Center for Quantum Devices S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible.
[reprint (PDF)] |
1. | High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si Steven Slivken and Manijeh Razeghi Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal] We report on the realization of an InP-based long
wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth
was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power
(>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)] |
1. | Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and fabrication M. Razeghi special issue of Microelectronics Journal 30 (10)-- October 1, 1999[reprint (PDF)] |
1. | New design strategies for multifunctional and inexpensive quantum cascade lasers Steven Slivken; Manijeh Razeghi Proc. SPIE 10926, Quantum Sensing and Nano Electronics and Photonics XVI, 1092611-- February 1, 2019 ...[Visit Journal] This manuscript describes some of the new advances in active mid-infrared photonic integrated circuits enabled by new quantum cascade laser technologies. This includes monolithic beam steering which was achieved via the integration of a widely tunable QCL and a tapered grating outcoupler. A record 17.9 degrees of steering with a low divergence beam (0.5 degrees) was achieved. In addition, the use of surface emitting architectures is proposed as a means to reduce the manufacturing cost of next-generation QCLs. A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. All of this is achieved while maintaining a high quality output beam, similar to a standard edge emitter. [reprint (PDF)] |
1. | Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors Arash Dehzangi, Quentin Durlin, Donghai Wu, Ryan McClintock, Manijeh Razeghi Semiconductor Science and Technology, 34(6), 06LT01-- May 25, 2019 ...[Visit Journal] Different passivation techniques are investigated for reducing leakage current in small pixel (down to 9 μm) heterostructure photodetectors designed for the short-wavelength infrared range. Process evaluation test chips were fabricated using the same process as for focal plane arrays. Arrays of small photodetectors were electrically characterized under dark conditions from 150 K to room temperature. In order to evaluate the leakage current, we studied the relation between the inverse of dynamic resistance at −20 mV and zero bias and perimeter over area P/A ratio as the pixel size is scaled down. At 150 K, leakage current arising from the perimeter dominates while bulk leakage dominates at room temperature. We find that in shortwave devices directly underfilling hybridized devices with a thermoset epoxy resin without first doing any additional passivation/protection after etching gives the lowest leakage with a surface resistance of 4.2 × 109 and 8.9 × 103 Ω· cm−1 at 150 and 300 K, for −20 mV of bias voltage, respectively. [reprint (PDF)] |
1. | Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal] Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)] |
1. | High Quantum Efficiency AlGaN Solar-Blind Photodetectors R. McClintock, A. Yasan, K. Mayes, D. Shiell, S.R. Darvish, P. Kung and M. Razeghi Applied Physics Letters, 84 (8)-- February 23, 2004 ...[Visit Journal] We report AlGaN-based back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias. This corresponds to a high external quantum efficiency of 60%, which improves to a value as high as 72% under 5 V reverse bias. We attribute the high performance of these devices to the use of a very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material and a highly conductive Si–In co-doped Al0.5Ga0.5N layer [reprint (PDF)] |
Page 6 of 7: Prev << 1 2 3 4 5 6 7 >> Next (160 Items)
|