Page 5 of 7:  Prev << 1 2 3 4 5  6 7  >> Next  (157 Items)

1.  Very High Average Power at Room Temperature from λ ~ 5.9 μm Quantum Cascade Lasers
J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi
Applied Physics Letters, 82 (20)-- May 19, 2003 ...[Visit Journal]
We report a very high average output power at room temperature for quantum-cascade lasers emitting at λ ~ 5.9 µm. For high-reflectivity-coated 2-mm-long cavities, a low threshold current density of 1.7 kA/cm2 was obtained at room temperature. From 300 to 400 K, the characteristic temperature (T0) was 198 K. A maximum average output power of 0.67 W was achieved. In addition, 0.56 W average output power was observed at a duty cycle of 56%. [reprint (PDF)]
 
1.  High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition
J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi
Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal]
A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was achieved at −0.9 V bias [reprint (PDF)]
 
1.  Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi
Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal]
Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)]
 
1.  High Quantum Efficiency AlGaN Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S.R. Darvish, P. Kung and M. Razeghi
Applied Physics Letters, 84 (8)-- February 23, 2004 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias. This corresponds to a high external quantum efficiency of 60%, which improves to a value as high as 72% under 5 V reverse bias. We attribute the high performance of these devices to the use of a very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material and a highly conductive Si–In co-doped Al0.5Ga0.5N layer [reprint (PDF)]
 
1.  Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application
Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi
Optics Letters Vol. 40, Iss. 1, pp. 29–32-- December 18, 2014 ...[Visit Journal]
An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and −50  mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10−5  A/cm², with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×1012 Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10−9  A/cm², and specific detectivity of 1.5×1014 Jones. From 81 to 100 K, the FPA showed ∼11  mK NEDT by using F/2.3 optics and a 9.69 ms integration time. [reprint (PDF)]
 
1.  InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity
H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal]
Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)]
 
1.  Demonstration of high performance long wavelength infrared Type-II InAs/GaSb superlattice photodidoe grown on GaAs substrate
S. Abdollahi Pour, B.M. Nguyen, S. Bogdanov, E.K. Huang, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 17, p. 173505-- October 26, 2009 ...[Visit Journal]
We report the growth and characterization of long wavelength infrared type-II InAs/GaSb superlattice photodiodes with a 50% cut-off wavelength at 11 µm, on GaAs substrate. Despite a 7.3% lattice mismatch to the substrate, photodiodes passivated with polyimide exhibit an R0A value of 35 Ω·cm² at 77 K, which is in the same order of magnitude as reference devices grown on native GaSb substrate. With a reverse applied bias less than 500 mV, the dark current density and differential resistance-area product are close to that of devices on GaSb substrate, within the tolerance of the processing and measurement. The quantum efficiency attains the expected value of 20% at zero bias, resulting in a Johnson limited detectivity of 1.1×1011 Jones. Although some difference in performances is observed, devices grown on GaAs substrate already attained the background limit performance at 77 K with a 300 K background and a 2-π field of view. [reprint (PDF)]
 
1.  Tunability of intersubband absorption from 4.5 to 5.3 µm in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition
N. Péré-Laperne, C. Bayram, L. Nguyen-Thê, R. McClintock, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 13, p. 131109-- September 28, 2009 ...[Visit Journal]
Intersubband (ISB) absorption at wavelengths as long as 5.3 µm is realized in GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition. By employing low aluminum content Al0.2Ga0.8N barriers and varying the well width from 2.6 to 5.1 nm, ISB absorption has been tuned from 4.5 to 5.3 µm. Theoretical ISB absorption and interband emission models are developed and compared to the experimental results. The effects of band offsets and the piezoelectric fields on these superlattices are investigated. [reprint (PDF)]
 
1.  High-Power CW Mid-IR Quantum Cascade Lasers
J.R. Meyer, W.W. Bewley, J.R. Lindle, I. Vurgaftman, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
SPIE Conference, Jose, CA, -- January 22, 2005 ...[Visit Journal]
We report the cw operation of quantum cascade lasers that do not require cryogenic cooling and emit at λ = 4.7-6.2 µm. At 200 K, more than 1 W of output power is obtained from 12-µm-wide stripes, with a wall-plug efficiency (ηwall) near 10%. Room-temperature cw operation has also been demonstrated, with a maximum output power of 640 mW (ηwall = 4.5%) at 6 µm and 260 mW (ηwall = 2.3%) at 4.8 µm. Far-field characterization indicates that whereas the beam quality remains close to the diffraction limit in all of the tested lasers, in the devices emitting at 6.2 µm the beam tends to steer by as much as 5-10° degrees in either direction with varying temperature and pump current. [reprint (PDF)]
 
1.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
1.  World's first demonstration of type-II superlattice dual band 640 x 512 LWIR focal plane array
E.K. Huang and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680Z-- January 22, 2012 ...[Visit Journal]
High resolution multi-band infrared detection of terrestrial objects is useful in applications such as long range and high altitude surveillance. In this paper, we present a 640 x 512 type-II superlattice focal plane array (FPA) in the long-wave infrared (LWIR) suitable for such purposes, featuring 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red). The dual band camera is single-bump hybridized to an Indigo 30 μm pitch ISC0905 read-out integrated circuit. Test pixels revealed background limited behavior with specific detectivities as high as ~5x1011 Jones at 7.9 μm (blue) and ~1x1011 Jones at 10.2 μm (red) at 77K. [reprint (PDF)]
 
1.  Solar-blind avalanche photodiodes
R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal]
There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)]
 
1.  Transport and photodetection in self-assembled semiconductor quantum dots
M Razeghi, H Lim, S Tsao, J Szafraniec, W Zhang, K Mi and B Movaghar
Nanotechnology 16 219-- January 7, 2005 ...[Visit Journal]
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. [reprint (PDF)]
 
1.  Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi
Journal of Applied Physics 98-- October 15, 2005 ...[Visit Journal]
We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. [reprint (PDF)]
 
1.  Infrared detection from GaInAs/InP nanopillar arrays
A. Gin, B. Movaghar, M. Razeghi and G.J. Brown
Nanotechnology 16-- July 1, 2005 ...[Visit Journal]
We report on the photoresponse from large arrays of 40 nm radius nanopillars with sensitivity in the long-wavelength infrared regime. Using photoluminescence techniques, a peak wavelength blue shift of approximately 5 meV was observed at 30 K from GaInAs/InP nanopillar structures, indicating carrier confinement effects. Responsivity measurements at 30 K indicated peak wavelength response at about 8 µm with responsivity of 420 mA/W at −2 V bias. We have also measured the noise and estimated the peak detectivity to be 3×108 cm·Hz½·W−1 at 1 V reverse bias and 30 K. A maximum internal quantum efficiency of 4.5% was derived from experiment. Both the photo and the dark transport have been successfully modeled as processes that involve direct and indirect field-assisted tunneling as well as thermionic emission. The best agreement with experiment was obtained when allowances were made for the non-uniformity of barrier widths and electric field heating of carriers above the lattice temperature. [reprint (PDF)]
 
1.  Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal]
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)]
 
1.  High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal]
Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)]
 
1.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal]
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)]
 
1.  High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm
WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI
OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal]
We report a room-temperature eight-element phase-locked quantum cascade laser array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV) design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)]
 
1.  Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi
Proc. SPIE 11687 (2021) 116872D-1 ...[Visit Journal]
Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)]
 
1.  Demonstration of Zn-Diffused Planar Long-Wavelength Infrared Photodetector Based on Type-II Superlattice Grown by MBE
Rajendra K. Saroj, Van Hoang Nguyen, Steven Slivken, Gail J. Brown and Manijeh Razeghi
IEEE Journal of Quantum Electronics ...[Visit Journal]
We report on a planar long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattice with zinc diffusion. The superlattice structures were grown by molecular beam epitaxy, followed by a post-growth Zinc diffusion process in a metal-organic chemical vapor deposition reactor. The planar photodetectors showed a peak responsivity of 2.18 A/W, under an applied bias of −20 mV, with a corresponding quantum efficiency of 44.5%, without any anti-reflection coating, and had a 100% cut-off wavelength of 8.5 μm at 77 K temperature. These photodetectors exhibit a specific peak detectivity of 3.0×10^12 cm.Hz^1/2/W, with a dark current density of 1.5 × 10−5 A/cm2 and the differential-resistance-area product of ∼8.6 × 10−1 Ω.cm2, under an applied bias of −20 mV at 77 K. A comparative study between the planar and conventional mesa isolated photodetectors was also carried out. [reprint (PDF)]
 
1.  Gas sensing spectroscopy system utilizing a sample grating distributed feedback quantum cascade laser array and type II superlattice detector
Nathaniel R. Coirier; Andrea I. Gomez-Patron; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128815-- January 31, 2020 ...[Visit Journal]
Gas spectroscopy is a tool that can be used in a variety of applications. One example is in the medical field, where it can diagnose patients by detecting biomarkers in breath, and another is in the security field, where it can safely alert personnel about ambient concentrations of dangerous gas. In this paper, we document the design and construction of a system compact enough to be easily deployable in defense, healthcare, and chemical safety environments. Current gas sensing systems use basic quantum cascade lasers (QCLs) or distributed feedback quantum cascade lasers (DFB QCLs) with large benchtop signal recovery systems to determine gas concentrations. There are significant issues with these setups, namely the lack of laser tunability and the lack of practicality outside of a very clean lab setting. QCLs are advantageous for gas sensing purposes because they are the most efficient lasers at the mid infrared region (MIR). This is necessary since gases tend to have stronger absorption lines in the MIR range than in the near-infrared (NIR) region. To incorporate the efficiency of a QCL with wide tuning capabilities in the MIR region, sampled grating distributed feedback (SGDFB) QCLs are the answer as they have produced systems that are widely tunable, which is advantageous for scanning a robust and complete absorption spectrum. The system employs a SGDFB QCL array emitter, a Type II InAsSb Superlattice detector receiver, a gas cell, and a cooling system. [reprint (PDF)]
 
1.  The correlation between x-ray diffraction patterns and strain distribution inside GaInP/GaAs superlattices
X.G. He, M. Erdtmann, R. Williams, S. Kim, and M. Razeghi
Applied Physics Letters 65 (22)-- November 28, 1994 ...[Visit Journal]
Strong correlation between x‐ray diffraction characteristics and strain distribution inside GaInP/GaAs superlattices has been reported. It is found that the symmetry of (002) diffraction patterns can be used to evaluate the interface strain status. A sample with no interfacial strains has a symmetric (002) diffraction pattern and weak (004) diffraction pattern. It is also demonstrated that strain distribution in superlattices can be readily estimated qualitatively by analyzing x-ray diffraction patterns. [reprint (PDF)]
 
1.  InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition
B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (23)-- June 7, 1999 ...[Visit Journal]
We report high power mid-infrared electrical injection operation of laser diodes based on InAsSb/InAsP strained-layer superlattices grown on InAs substrate by metal-organic chemical vapor deposition. The broad-area laser diodes with 100 μm aperture and 1800 μm cavity length demonstrate peak output powers of 546 and 94 mW in pulsed and cw operation respectively at 100 K with a threshold current density as low as 100 A/cm². [reprint (PDF)]
 
1.  Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram, P. Kung and M. Razeghi
Applied Physics Letters, Vol. 90 No. 14, p. 141112-1-- April 2, 2007 ...[Visit Journal]
Avalanche p-i-n photodiodes were fabricated on AlN templates for back illumination. Structures with different intrinsic layer thicknesses were tested. A critical electric field of 2.73 MV/cm was estimated from the variation of the breakdown voltage with thickness. From the device response under back and front illumination and the consequent selective injection of holes and electrons in the junction, ionization coefficients were obtained for GaN. The hole ionization coefficient was found to be higher than the electron ionization coefficient as predicted by theory. Excess multiplication noise factors were also calculated for back and front illumination, and indicated a higher noise contribution for electron injection. [reprint (PDF)]
 

Page 5 of 7:  Prev << 1 2 3 4 5  6 7  >> Next  (157 Items)