Page 5 of 6:  Prev << 1 2 3 4 5  6  >> Next  (129 Items)

1.  Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal]
In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)]
 
1.  High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si
Steven Slivken and Manijeh Razeghi
Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal]
We report on the realization of an InP-based long wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power (>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)]
 
1.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
1.  High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition
J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi
Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal]
A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was achieved at −0.9 V bias [reprint (PDF)]
 
1.  Sb-based infrared materials and photodetectors for the near room temperature applications
J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal]
We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)]
 
1.  Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 7, Article number: 3379-- June 13, 2017 ...[Visit Journal]
Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)]
 
1.  High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal]
Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this multi-spectral detection. In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)]
 
1.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
1.  Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature
A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal]
Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)]
 
1.  Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range
H. Mohseni, E. Michel, J. Sandven, M. Razeghi, W. Mitchel, and G. Brown
Applied Physics Letters 71 (10)-- September 8, 1997 ...[Visit Journal]
In this letter we report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi-insulating GaAs substrates for long wavelength infrared detectors. Photoconductive detectors fabricated from the superlattices showed photoresponse up to 12 µm and peak responsivity of 5.5 V/W with Johnson noise limited detectivity of 1.33 × 109 cm·Hz½/W at 10.3 µm at 78 K. [reprint (PDF)]
 
1.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
1.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
1.  Techniques for High-Quality SiO2 Films
J. Nguyen and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791K-1-8-- January 29, 2007 ...[Visit Journal]
We report on the comparison of optical, structural, and electrical properties of SiO2 using plasma-enhanced chemical vapor deposition and ion-beam sputtering deposition. High-quality, low-temperature deposition of SiO2 by ion-beam sputtering deposition is shown to have lower absorption, smoother and more densely packed films, a lower amount of fixed oxide charges, and a lower trapped-interface density than SiO2 by plasma-enhanced chemical vapor deposition. This high-quality SiO2 is then demonstrated as an excellent electrical and mechanical surface passivation layer on Type-II InAs/GaSb photodetectors [reprint (PDF)]
 
1.  Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice
F. Callewaert, A.M. Hoang, and M. Razeghi
Applied Physics Letters, 104, 053508 (2014)-- February 6, 2014 ...[Visit Journal]
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10−5 A/cm² and a differential resistance-area of 3 700 Ω·cm² are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 1011 Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current. [reprint (PDF)]
 
1.  Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection
G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal]
New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)]
 
1.  2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal]
We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)]
 
1.  Persistent photoconductivity and the quantized Hall effect in In0.53Ga0.47As/InP heterostructures
H. P. Wei; D. C. Tsui; M. Razeghi
H. P. Wei, D. C. Tsui, M. Razeghi; Persistent photoconductivity and the quantized Hall effect in In0.53Ga0.47As/InP heterostructures. Appl. Phys. Lett. 15 September 1984; 45 (6): 666–668.-- September 15, 1984 ...[Visit Journal]
A persistent photoconductivity is observed in the transport of the high mobility two‐dimensional electron gas in In0.53Ga0.47 As/InP heterostructures. Low field Hall measurements from 300 to 4.2 K and the quantized Hall effect in the high field limit are studied with radiation from visible and infrared light‐emitting diodes. Our results demonstrate conclusively that the effect is due to photogeneration of electron‐hole pairs in the heterostructure and trapping of holes in the In0.53Ga0.47 As. [reprint (PDF)]
 
1.  Comparison of the Physical Properties of GaN Thin Films Deposited on (0112) and (0001) Sapphire Substrates
C.J. Sun and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
A direct comparison of the physical properties of GaN thin films is made as a function of the choice of substrate orientations. Gallium nitride single crystals were grown on (0001) and (0112) sapphire substrates by metalorganic chemical vapor deposition. Better crystallinity with fine ridgelike facets is obtained on the (0112) sapphire. Also lower carrier concentration and higher mobilities indicate both lower nitrogen vacancies and less oxygen incorporation on the (0112) sapphire. The results of this study show better physical properties of GaN thin films achieved on (0112) sapphire. [reprint (PDF)]
 
1.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
1.  Stranski-Krastanov growth of InGaN quantum dots emitting in green spectra
C. Bayram and M. Razeghi
Applied Physics A: Materials Science and Processing, Vol. 96, No. 2, p. 403-408-- August 1, 2009 ...[Visit Journal]
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. [reprint (PDF)]
 
1.  Extended electrical tuning of quantum cascade lasers with digital concatenated gratings
S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi
Appl. Phys. Lett. 103, 231110 (2013)-- December 6, 2013 ...[Visit Journal]
In this report, the sampled grating distributed feedback laser architecture is modified with digital concatenated gratings to partially compensate for the wavelength dependence of optical gain in a standard high efficiency quantum cascade laser core. This allows equalization of laser threshold over a wide wavelength range and demonstration of wide electrical tuning. With only two control currents, a full tuning range of 500 nm (236 cm−1) has been demonstrated. Emission is single mode, with a side mode suppression of >20 dB. [reprint (PDF)]
 
1.  High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering
Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow
Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal]
We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)]
 
1.  Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal]
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)]
 
1.  Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers
Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang
Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
1.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 

Page 5 of 6:  Prev << 1 2 3 4 5  6  >> Next  (129 Items)