Page 5 of 27:  Prev << 1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

3.  Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Feihu Wang, Steven Slivken, and Manijeh Razeghi
OSA Photonics Research •https://doi.org/10.1364/PRJ.423573 ...[Visit Journal]
High-power, high-speed quantum cascade lasers (QCLs) with stable emission in the mid-infrared regime are of great importance for applications in metrology, telecommunication, and fundamental tests of physics. Owing to the inter-sub-band transition, the unique ultrafast gain recovery time of the QCL with picosecond dynamics is expected to overcome the modulation limit of classical semiconductor lasers and bring a revolution for the next generation of ultrahigh-speed optical communication. Therefore, harmonic injection locking, offering the possibility to fast modulate and greatly stabilize the laser emission beyond the rate limited by cavity length, is inherently adapted to QCLs. In this work, we demonstrate for the first time the harmonic injection locking of a mid-infrared QCL with an output power over 1 watt in continuous-wave operation at 288 K. Compared with an unlocked laser, the inter-mode spacing fluctuation of an injection locked QCL can be considerably reduced by a factor above 1×10 E3, which permits the realization of an ultra-stable mid-infrared semiconductor laser with high phase coherence and frequency purity. Despite temperature change, this fluctuation can be still stabilized to hertz level by a microwave modulation up to ∼18 GHz. These results open up the prospect of the applications of mid-infrared QCL technology for frequency comb engineering, metrology and the next generation ultrahigh-speed telecommunication. It may also stimulate new schemes for exploring ultrafast mid-infrared pulse generation in QCLs. [reprint (PDF)]
 
3.  Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi
Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017 ...[Visit Journal]
We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. [reprint (PDF)]
 
3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Infrared detection from GaInAs/InP nanopillar arrays
A. Gin, B. Movaghar, M. Razeghi and G.J. Brown
Nanotechnology 16-- July 1, 2005 ...[Visit Journal]
We report on the photoresponse from large arrays of 40 nm radius nanopillars with sensitivity in the long-wavelength infrared regime. Using photoluminescence techniques, a peak wavelength blue shift of approximately 5 meV was observed at 30 K from GaInAs/InP nanopillar structures, indicating carrier confinement effects. Responsivity measurements at 30 K indicated peak wavelength response at about 8 µm with responsivity of 420 mA/W at −2 V bias. We have also measured the noise and estimated the peak detectivity to be 3×108 cm·Hz½·W−1 at 1 V reverse bias and 30 K. A maximum internal quantum efficiency of 4.5% was derived from experiment. Both the photo and the dark transport have been successfully modeled as processes that involve direct and indirect field-assisted tunneling as well as thermionic emission. The best agreement with experiment was obtained when allowances were made for the non-uniformity of barrier widths and electric field heating of carriers above the lattice temperature. [reprint (PDF)]
 
3.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016 ...[Visit Journal]
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. [reprint (PDF)]
 
3.  Background limited performance of long wavelength infrared focal plane arrays fabricated from type-II InAs/GaSb M-structure superlattice
P.Y. Delaunay, B.M. Nguyen and M. Razeghi
SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981Q-- April 13, 2009 ...[Visit Journal]
Recent advances in growth techniques, structure design and processing have lifted the performance of Type-II InAs/GaSb superlattice photodetectors. The introduction of a M-structure design improved both the dark current and R0A of Type-II photodiodes. This new structure combined with a thick absorbing region demonstrated background limited performance at 77K for a 300K background and a 2-π field of view. A focal plane array with a 9.6 μm 50% cutoff wavelength was fabricated with this design and characterized at 80K. The dark current of individual pixels was measured around 1.3 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without anti-reflective coating was 72%. The noise equivalent temperature difference reached 23 mK. The deposition of an anti-reflective coating improved the NEDT to 20 mK and the quantum efficiency to 89%. [reprint (PDF)]
 
3.  Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice
F. Callewaert, A.M. Hoang, and M. Razeghi
Applied Physics Letters, 104, 053508 (2014)-- February 6, 2014 ...[Visit Journal]
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10−5 A/cm² and a differential resistance-area of 3 700 Ω·cm² are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 1011 Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current. [reprint (PDF)]
 
3.  High power, room temperature, Terahertz sources and frequency comb based on Difference frequency generation at CQD
Manijeh Razeghi
Proc. of SPIE 12230, 1223006, September 2022 ...[Visit Journal]
Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG)and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. [reprint (PDF)]
 
3.  Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers
Manijeh Razeghi, Arash Dehzangi, Donghai Wu, Ryan McClintock, Yiyun Zhang, Quentin Durlin, Jiakai Li, Fanfei Meng
Proc. SPIE Defense + Commercial Sensing,Infrared Technology and Applications XLV, 110020G -- May 7, 2019 ...[Visit Journal]
Third generation of infrared imagers demand performances for higher detectivity, higher operating temperature, higher resolution, and multi-color detection all accomplished with better yield and lower manufacturing costs. Antimonidebased gap-engineered Type-II superlattices (T2SLs) material system is considered as a potential alternative for MercuryCadmium-Telluride (HgCdTe) technology in all different infrared detection regimes from short to very long wavelengths for the third generation of infrared imagers. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. We will present the most recent research results on Antimonide-based gap-engineered Type-II superlattices, such as highperformance dual-band SWIR/MWIR photo-detectors and focal plane arrays for different infrared regimes, toward the third generation of infrared imaging systems at the Center for Zuantum Devices. Comparing metal-organic chemical vapor deposition (MOCVD), vs molecular beam epitaxy (MBE). [reprint (PDF)]
 
3.  Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal]
In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)]
 
2.  Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi
IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal]
Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)]
 
2.  Tight-binding theory for the thermal evolution of optical band gaps in semiconductors and superlattices
S. Abdollahi Pour, B. Movaghar, and M. Razeghi
American Physical Review, Vol. 83, No. 11, p. 115331-1-- March 15, 2011 ...[Visit Journal]
A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors and superlattices using an empirical tight-binding method has been developed. The approach follows closely established procedures and allows parameter variations which give rise to perfect fits to the experimental data. We also apply the tight-binding method to the far more complex problem of band structures in Type-II infrared superlattices for which we have access to original experimental data recently acquired by our group. Given the close packing of bands in small band-gap Type-II designs, k·p methods become difficult to handle, and it turns out that the sp3s* tight-binding scheme is a practical and powerful asset. Other approaches to band-gap shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term, the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory. [reprint (PDF)]
 
2.  AlxGa1-xN (0 ≤ x ≤ 1) Ultraviolet Photodetectors Grown on Sapphire by Metal-organic Chemical-vapor Deposition
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
Applied Physics Letters 70 (8)-- February 24, 1997 ...[Visit Journal]
AlxGa1–xN (0 ≤ x ≤ 1) ultraviolet photoconductors with cutoff wavelengths from 365 to 200 nm have been fabricated and characterized. The maximum detectivity reached 5.5 × 108 cm·Hz1/2/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1–xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 ms. The frequency-dependent noise spectrum shows that it is dominated by Johnson noise at high frequencies for low-Al-composition samples. [reprint (PDF)]
 
2.  A detailed analysis of carrier transport in InAs0.3Sb0.7 layers grown on GaAs substrates by metalorganic chemical vapor deposition
C. Besikci, Y.H. Choi, G. Labeyrie, E. Bigan and M. Razeghi with J.B. Cohen, J. Carsello, and V.P. Dravid
Journal of Applied Physics 76 (10)-- November 15, 1994 ...[Visit Journal]
InAs0.3Sb0.7 layers with mirrorlike morphology have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A room‐temperature electron Hall mobility of 2×104 cm²/V· s has been obtained for a 2 μm thick layer. Low‐temperature resistivity of the layers depended on TMIn flow rate and layer thickness. Hall mobility decreased monotonically with decreasing temperature below 300 K. A 77 K conductivity profile has shown an anomalous increase in the sample conductivity with decreasing thickness except in the near vicinity of the heterointerface. In order to interpret the experimental data, the effects of different scattering mechanisms on carrier mobility have been calculated, and the influences of the lattice mismatch and surface conduction on the Hall measurements have been investigated by applying a three‐layer Hall‐effect model. Experimental and theoretical results suggest that the combined effects of the dislocations generated by the large lattice mismatch and strong surface inversion may lead to deceptive Hall measurements by reflecting typical n‐type behavior for a p‐type sample, and the measured carrier concentration may considerably be affected by the surface conduction up to near room temperature. A quantitative analysis of dislocation scattering has shown significant degradation in electron mobility for dislocation densities above 107 cm−2. The effects of dislocation scattering on hole mobility have been found to be less severe. It has also been observed that there is a critical epilayer thickness (∼1 μm) below which the surface electron mobility is limited by dislocation scattering. [reprint (PDF)]
 
2.  InTlSb alloys for infrared detection
E. Bigan, Y.H. Choi, G. Labeyrie, and M. Razeghi
Proceedings, SPIE Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, Vol. 2145-- January 24, 1994 ...[Visit Journal]
InTISb alloys have been grown by low-pressure metalorganic chemical vapor deposition, and characterized. Photoconductors exhibit a cutoff wavelength that can be tailored from 5.5 μm up to 9 μm by varying the thallium content. Experimental observations suggest that this can be further extended by increasing the thallium content. An InTISb photoconductor having a 9 μm cutoff wavelength exhibited a D* of 109 cm·Hz½·W-1 at 7 μm operating wavelength. [reprint (PDF)]
 
2.  Gain and recombination dynamics of quantum-dot infrared photodetecto
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- December 4, 2006 ...[Visit Journal][reprint (PDF)]
 
2.  Thermal Conductivity of InAs/GaSb Type II Superlattice
C. Zhou, B.M. Nguyen, M. Razeghi and M. Grayson
Journal of Electronic Materials, Vol. 41, No. 9, p. 2322-2325-- August 1, 2012 ...[Visit Journal]
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice(T2SL) is measured from 13 K to 300 K using the 3x method. Thermal conductivity is reduced by up to two orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1 W/m K to 8 W/m K may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL interband cascade lasers and highpower photodiodes. We describe a power-law approximation to model nonlinearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively. [reprint (PDF)]
 
2.  InSb Infrared Photodetectors on Si Substrates Grown by Molecular Beam Epitaxy
E. Michel, J. Xu, J.D. Kim, I. Ferguson, and M. Razeghi
IEEE Photonics Technology Letters 8 (5) pp. 673-- May 1, 1996 ...[Visit Journal]
The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-in Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)]
 
2.  Investigations of p-type signal for ZnO thin films grown on (100) GaAs substrates by pulsed laser deposition
D.J. Rogers, F. Hosseini Teherani, T. Monteiro, M. Soares, A. Neves, M. Carmo, S. Periera, M.R. Correia, A. Lusson, E. Alves, N.P. Barradas, J.K. Morrod, K.A. Prior, P. Kung, A. Yasan, and M. Razeghi
Phys. Stat. Sol. C, 3 (4)-- March 1, 2006 ...[Visit Journal]
n this work we investigated ZnO films grown on semi-insulating (100) GaAs substrates by pulsed laser deposition. Samples were studied using techniques including X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Raman spectroscopy, temperature dependent photoluminescence, C-V profiling and temperature dependent Hall measurements. [reprint (PDF)]
 
2.  Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane
W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi
Nanotechnology 17-- January 1, 2006 ...[Visit Journal]
GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)]
 
2.  Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal]
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
2.  Gallium nitride on silicon for consumer & scalable photonics
C. Bayram, K.T. Shiu, Y. Zhu, C.W. Cheng, D.K. Sadana, Z. Vashaei, E. Cicek, R. McClintock and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 863112-1, Photonics West, San Francisco, CA-- February 4, 2013 ...[Visit Journal]
Gallium Nitride (GaN) is a unique material system that has been heavily exploited for photonic devices thanks to ultraviolet-to-terahertz spectral tunability. However, without a cost effective approach, GaN technology is limited to laboratory demonstrations and niche applications. In this investigation, integration of GaN on Silicon (100) substrates is attempted to enable widespread application of GaN based optoelectronics. Controlled local epitaxy of wurtzite phase GaN on on-axis Si(100) substrates is demonstrated via metal organic chemical vapor deposition (MOCVD). CMOS-compatible fabrication scheme is used to realize [SiO2-Si{111}-Si{100}] groove structures on conventional 200-mm Si(100) substrates. MOCVD growth (surface treatment, nucleation, initiation) conditions are studied to achieve controlled GaN epitaxy on such grooved Si(100) substrates. Scanning electron microscopy and transmission electron microscopy techniques are used to determine uniformity and defectivity of the GaN. Our results show that aforementioned groove structures along with optimized MOCVD growth conditions can be used to achieve controlled local epitaxy of wurtzite phase GaN on on-axis Si(100) substrates. [reprint (PDF)]
 
2.  Very high wall plug efficiency of quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010 ...[Visit Journal]
We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. [reprint (PDF)]
 
2.  Stability of far fields in double heterostructure and multiple quantum well InAsSb/InPAsSb/InAs midinfrared lasers
H. Yi, A. Rybaltowski, J. Diaz, D. Wu, B. Lane, Y. Xiao, and M. Razeghi
Applied Physics Letters 70 (24)-- June 16, 1997 ...[Visit Journal]
Far fields in perpendicular direction to the junction are investigated in double heterostructure (DH) and multiple quantum well (MQW) midwave-infrared InAsSb/InPAsSb/InAs lasers (λ = 3.2–3.6 μm). Strong broadening of the far fields in the DH lasers was observed with increases in temperature and/or current. On the contrary, MQW lasers with otherwise identical structure exhibit very stable far fields as narrow as 23° for all the operating conditions investigated. Our experiment and theoretical modeling suggest that these different behaviors of far fields in DH and MQW lasers are attributed to the refractive index fluctuation in the InAsSb laser active region. [reprint (PDF)]
 
2.  320x256 infrared focal plane array based on type-II InAs/GaSb superlattice with a 12 μm cutoff wavelength
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, and M. Razeghi
SPIE Porceedings, Vol. 6542, Orlando, FL 2007, p. 654204-- April 9, 2007 ...[Visit Journal]
In the past few years, significant progress has been made in the structure design, growth and processing of Type-II InAs/GaSb superlattice photodetectors. Type-II superlattice demonstrated its ability to perform imaging in the middle and long infra-red range, becoming a potential competitor for technologies such as QWIP and HgCdTe. Using an empirical tight-binding model, we developed a superlattice design that matches the lattice parameter of GaSb substrates and presents a cutoff wavelength of 12 μm. Electrical and optical measurements performed on single element detectors at 77 K showed an R0A averaging 13 Ω·cm² and a quantum efficiency as high as 54%. We demonstrated high quality material growth with x-ray FWHM below 30 arcsec and an AFM rms roughness of 1.5 Å over an area of 20x20 μm². A 320x256 array of 25x25μm² pixels, hybridized to an Indigo Read Out Integrated Circuit, performed thermal imaging up to 185 K with an operability close to 97%. The noise equivalent temperature difference at 81 K presented a peak at 270 mK, corresponding to a mean value of 340 mK. [reprint (PDF)]
 

Page 5 of 27:  Prev << 1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)