About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 4 of 9: Prev << 1 2 3 4 5 6 7 8 9 >> Next (213 Items)
2. | High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal] Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)] |
2. | Widely tuned room temperature terahertz quantum cascade laser sources Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi SPIE Proceedings, Vol. 8631, p. 863108-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] Room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference frequency generation are demonstrated. Two mid-infrared active cores in the longer mid-IR wavelength range (9-11 micron)based on the single-phonon resonance scheme are designed with a second-order difference frequency nonlinearity
specially optimized for the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)] |
2. | Gas sensing spectroscopy system utilizing a sample grating distributed feedback quantum cascade laser array and type II superlattice detector Nathaniel R. Coirier; Andrea I. Gomez-Patron; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128815-- January 31, 2020 ...[Visit Journal] Gas spectroscopy is a tool that can be used in a variety of applications. One example is in the medical field, where it can diagnose patients by detecting biomarkers in breath, and another is in the security field, where it can safely alert personnel about ambient concentrations of dangerous gas. In this paper, we document the design and construction of a system compact enough to be easily deployable in defense, healthcare, and chemical
safety environments. Current gas sensing systems use basic quantum cascade lasers (QCLs) or distributed
feedback quantum cascade lasers (DFB QCLs) with large benchtop signal recovery systems to determine gas concentrations. There are significant issues with these setups, namely the lack of laser tunability and the lack of practicality outside of a very clean lab setting. QCLs are advantageous for gas sensing purposes because they are the most efficient lasers at the mid infrared region (MIR). This is necessary since gases tend to have stronger
absorption lines in the MIR range than in the near-infrared (NIR) region. To incorporate the efficiency of a QCL with wide tuning capabilities in the MIR region, sampled grating distributed feedback (SGDFB) QCLs are the answer as they have produced systems that are widely tunable, which is advantageous for scanning a robust and complete absorption spectrum. The system employs a SGDFB QCL array emitter, a Type II InAsSb Superlattice detector receiver, a gas cell, and a cooling system. [reprint (PDF)] |
2. | III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz M. Razeghi IEEE Photonics Journal-Breakthroughs in Photonics 2010, Vol. 3, No. 2, p. 263-267-- April 26, 2011 ...[Visit Journal] We review III-Nitride optoelectronic device technologies with an emphasis on recent breakthroughs. We start with a brief summary of historical accomplishments and then report the state-of-the-art in three key spectral regimes: (1) Ultraviolet (AlGaN-based avalanche photodiodes, single photon detectors, focal plane arrays, and light emitting diodes), (2) Visible (InGaN-based solid state lighting, lasers, and solar cells), and (3) Near-, mid-infrared, and terahertz (AlGaN/GaN-based gap-engineered intersubband devices). We also describe future trends in III-Nitride optoelectronic devices. [reprint (PDF)] |
2. | High-power mid- and far- wavelength infrared lasers for free space communication M. Razeghi; A. Evans; J. Nguyen; Y. Bai; S. Slivken; S.R. Darvish; K. Mi Proc. SPIE 6593, Photonic Materials, Devices, and Applications II, 65931V (June 12, 2007)-- June 12, 2007 ...[Visit Journal] Laser-based free-space communications have been developed to serve specific roles in "last mile" high-speed data networks due to their high security, low cost, portability, and high bandwidth. Conventional free-space systems based on near infrared optical devices suffer from reliability problems due to atmospheric scattering losses and scintillation effects, such as those encountered with storms, dust, and fog. Mid-infrared wavelengths are less affected by atmospheric effects and can significantly enhance link up-time and range. This paper will discuss some of the recent advances in high-power, high temperature, high reliability mid-infrared Quantum Cascade Lasers and their potential application in highly reliable free space communication links. [reprint (PDF)] |
2. | Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetector Arash Dehzangi , Abbas Haddadi, Romain Chevallier, Yiyun Zhang and Manijeh Razegh Semicond. Sci. Technol. 34, 03LT01-- February 4, 2019 ...[Visit Journal] We present an initial demonstration of a 1280 × 1024 extended short-wavelength infrared focal plane array (FPA) imager with 12μm pixel-pitch based on type–II InAs/AlSb/GaSb superlattice heterojunction photodetectors, with a novel bandstructure-engineered photo-generated carrier extractor as the window layer in the hetero structure to efficiently extract the photo-generated carriers. This heterostructure with a larger bandgap top window/contact layer leads to the device having lower dark current density compared to conventional pn junction devices. The large format FPA was fabricated with 12 μm pixel-pitch using a developed fabrication process. Test pixels fabricated separately exhibit 100% cut–off wavelengths of ∼2.22, ∼2.34μm, and ∼2.45μm at 150, 200K, and 300K. The test devices achieve saturated quantum efficiency values under zero bias of 54.3% and 68.4% at 150 and 300K, under back-side illumination and without any anti-reflection coating. At 150K, these photodetectors exhibit dark current density of 1.63 × 10−7 A·cm−2 under −20mV applied bias providing a specific detectivity of 1.01 × 1011 cm ·Hz½/W at 1.9μm. [reprint (PDF)] |
2. | Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors Ryan McClintock ; Manijeh Razeghi Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015 ...[Visit Journal] AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress.
In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. [reprint (PDF)] |
2. | High power frequency comb based on mid-infrared quantum cascade laser at λ ~9μm Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori Appl. Phys. Lett. 106, 051105-- February 2, 2015 ...[Visit Journal] We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm−1 and a high power output of 180 mW for ∼176 comb modes. [reprint (PDF)] |
2. | Highly temperature insensitive quantum cascade lasers Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal] An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)] |
2. | High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | Gain-length scaling in quantum dot/quantum well infrared photodetectors T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)] |
2. | Use of Yttria-Stabilised Zirconia Substrates for Zinc Oxide Mediated Epitaxial Lift-off of Superior Yttria-Stabilised Zirconia Thin Films D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi Proc. of SPIE Vol. 12887, Oxide-based Materials and Devices XV, 128870P 2024, San Francisco),doi: 10.1117/12.3023431 ...[Visit Journal] ZnO layers were grown on (100) and (111) oriented YSZ substrates by pulsed laser deposition (PLD). X-ray diffraction
studies revealed growth of wurtzite ZnO with strong preferential (0002) orientation. The ZnO layer on YSZ (111)
showed distinct Pendellosung fringes and a more pronounced c-axis orientation (rocking curve of 0.08°). Atomic force
microscopy revealed RMS roughnesses of 0.7 and 2.2nm for the ZnO on the YSZ (111) and YSZ (100), respectively.
YSZ was then grown on the ZnO buffered YSZ (111) substrate by PLD. XRD revealed that the YSZ overlayer grew
with a strong preferential (111) orientation. The YSZ/ZnO/YSZ (111) top surface was temporary bonded to an Apiezon
wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer
and release the YSZ from the substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus
confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax
carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ,
however. XRD suggested that this may have been due to compressive epitaxial strain release. [reprint (PDF)] |
2. | High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal] We report a room-temperature eight-element phase-locked quantum cascade laser
array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency
of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode
emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active
region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV)
design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge
type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)] |
2. | High performance monolithic, broadly tunable mid-infrared quantum cascade lasers WENJIA Zhou, DONGHAI Wu, RYAN McCLINTOCK, STEVEN SLIVKEN, AND MANIJEH RAZEGH1 Optica 4(10), p. 1228-- October 10, 2017 ...[Visit Journal] Mid-infrared lasers, emitting in the spectral region of 3-12 µm that contains strong characteristic vibrational transitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applications still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a monolithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 µm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broadband antireflection coating. Nearly fundamental transversemode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1 °). The demonstrated laser source opens new opportunities for mid-infrared spectroscopy. [reprint (PDF)] |
2. | Angled cavity broad area quantum cascade lasers Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, and M. Razeghi Applied Physics Letters, Vol. 100, Np. 8, p. 081106-1-- August 20, 2012 ...[Visit Journal] Angled cavity broad area quantum cascade lasers (QCLs) are investigated with surface gratingbased
distributed feedback (DFB) mechanisms. It is found that an angled cavity incorporating a one dimensional DFB with grating lines parallel to the laser facet offers the simplest solution for
single mode and diffraction limited emission in the facet normal direction. A room temperature
single mode QCL with the highest output power for wavelengths longer than 10 micron is demonstrated. This structure could be applied to a wide range of laser structures for power scaling along with spectral and spatial beam control. [reprint (PDF)] |
2. | Photovoltaic MWIR type-II superlattice focal plane array on GaAs substrate E.K. Huang, P.Y. Delaunay, B.M. Nguyen, S. Abdoullahi-Pour, and M. Razeghi IEEE Journal of Quantum Electronics (JQE), Vol. 46, No. 12, p. 1704-1708-- December 1, 2010 ...[Visit Journal] Recent improvements in the performance of Type-II superlattice (T2SL) photodetectors has spurred interest in developing low cost and large format focal plane arrays (FPA) on this material system. Due to the limitations of size and cost of native GaSb substrates, GaAs is an attractive alternative with 8” wafers commercially available, but is 7.8% lattice mismatched to T2SL. In this paper, we present a photovoltaic T2SL 320 x 256 focal plane array (FPA) in the MWIR on GaAs substrate. The FPA attained a median noise equivalent temperature difference (NEDT) of 13 mK and 10mK (F#=2.3) with integration times of 10.02 ms and 19.06 ms respectively at 67 K. [reprint (PDF)] |
2. | Stability of far fields in double heterostructure and multiple quantum well InAsSb/InPAsSb/InAs midinfrared lasers H. Yi, A. Rybaltowski, J. Diaz, D. Wu, B. Lane, Y. Xiao, and M. Razeghi Applied Physics Letters 70 (24)-- June 16, 1997 ...[Visit Journal] Far fields in perpendicular direction to the junction are investigated in double heterostructure (DH) and multiple quantum well (MQW) midwave-infrared InAsSb/InPAsSb/InAs lasers (λ = 3.2–3.6 μm). Strong broadening of the far fields in the DH lasers was observed with increases in temperature and/or current. On the contrary, MQW lasers with otherwise identical structure exhibit very stable far fields as narrow as 23° for all the operating conditions investigated. Our experiment and theoretical modeling suggest that these different behaviors of far fields in DH and MQW lasers are attributed to the refractive index fluctuation in the InAsSb laser active region. [reprint (PDF)] |
2. | Single-mode, high-power, midinfrared, quantum cascade laser phased arrays Wenjia Zhou , Donghai Wu , Quan-Yong Lu, Steven Slivken & Manijeh Razeghi Scientific Reports 8:14866-- October 5, 2018 ...[Visit Journal] We demonstrate single-mode, 16-channel, optical phased arrays based on quantum cascade laser
technology, with emission wavelengths around 4.8 μm. The integrated device consists of a distributed feedback seed section, a highly-efficient tree array multi-mode interferometer power splitter, and a 16-channel amplifier array with a 4° angled facet termination. With a single layer Y2O3 coating, the
angled facet reflectivity is estimated to be less than 0.1% for suppressing amplifier self-lasing. A peak output power of 30 W is achieved with an emission spectrum narrower than 11 nm and a side mode suppression ratio over 25 dB. Far field distribution measurement result indicates a uniform phase distribution across the array output. Using the same phased array architecture, we also demonstrate single-mode 3.8 μm QCL amplifier arrays with up to 20 W output power. [reprint (PDF)] |
2. | Stable single mode terahertz semiconductor sources at room temperature M. Razeghi 2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal] Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)] |
2. | High power InAsSb/InPAsSb/InAs mid-infrared lasers A. Rybaltowski, Y. Xiao, D. Wu, B. Lane, H. Yi, H. Feng, J. Diaz, and M. Razeghi Applied Physics Letters 71 (17)-- October 27, 1997 ...[Visit Journal] We demonstrate high-power InAsSb/InPAsSb laser bars (λ ≈ 3.2 μm) consisting of three 100 μm-wide laser stripes of 700 μm cavity length, with peak output power up to 3 W at 90 K, and far-fields for the direction perpendicular to the junction as narrow as 12° full width half maximum. Spectra and far-field patterns of the laser bars are shown to have excellent characteristics for a wide range of operating conditions, suggesting the possibility of even higher light power emission with good beam quality. Joule heating is shown to be the major factor limiting higher power operation. [reprint (PDF)] |
2. | Temperature dependent characteristics of λ ~ 3.8 µm room-temperature continuous-wave quantum-cascade lasers J.S. Yu, A. Evans, S. Slivken, S.R. Darvish and M. Razeghi Applied Physics Letters, 88 (25)-- June 19, 2006 ...[Visit Journal] The highest-performance device displays pulsed laser action at wavelengths between 3.4 and 3.6 μm, for temperatures up to 300 K, with a low temperature (80 K) threshold current density of approximately 2.6 kA/cm2, and a characteristic temperature of T0~130 K. The shortest wavelength QCL (λ ~ 3.05 μm) has a higher threshold current density (~12 kA/cm2 at T=20 K) and operates in pulsed mode at temperatures up to 110 K. [reprint (PDF)] |
2. | Room temperature continuous wave THz frequency comb based on quantum cascade lasers M. Razeghi; Q. Y. Lu; F. H. Wang; D. H. Wu; S. Slivken Proc. SPIE 11124, Terahertz Emitters, Receivers, and Applications X, 1112407-- September 6, 2019 ...[Visit Journal] Frequency combs, spectra of phase-coherent equidistant lines, have revolutionized time and frequency metrology. The recently developed quantum cascade laser (QCL) comb has exhibits great potential with high power and broadband spectrum. However, in the terahertz (THz) range, cryogenic cooling has to be applied for THz QCL combs. We report a room temperature THz frequency comb at 3.0 THz based on difference-frequency generation from a mid-IR QCL comb. A largely detuned distributed-feedback grating is integrated into the QCL cavity to provide the single mode operation as well as enhanced spatial hole-burning effect for multimode comb operation. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb provides a new solution to chip-based high-speed high-resolution THz spectroscopy with compact size at room temperature. [reprint (PDF)] |
2. | Recent advances in mid infrared (3-5 μm) quantum cascade lasers Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal] Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)] |
2. | High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)] |
2. | Quantum-Cascade Lasers Operating in Continuous-Wave Mode Above 90°C at λ ~5.25 µm A. Evans, J. Nguyen, S. Slivken, J.S. Yu, S.R. Darvish, and M. Razeghi Applied Physics Letters 88 (5)-- January 30, 2006 ...[Visit Journal] We report on the design and fabrication of λ~5.25 μm quantum-cascade lasers (QCLs) for very high temperature continuous-wave (CW) operation. CW operation is reported up to a maximum temperature of 90 °C (363 K). CW output power is reported in excess of 500 mW near room temperature with a low threshold current density. A finite element thermal model is used to investigate the Gth and maximum CW operating temperature of the QCLs. [reprint (PDF)] |
Page 4 of 9: Prev << 1 2 3 4 5 6 7 8 9 >> Next (213 Items)
|