Page 4 of 27:  Prev << 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

3.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016 ...[Visit Journal]
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. [reprint (PDF)]
 
3.  Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi
Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017 ...[Visit Journal]
We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. [reprint (PDF)]
 
3.  Widely tunable room temperature semiconductor terahertz source
Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 105, 201102-- November 17, 2014 ...[Visit Journal]
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing. [reprint (PDF)]
 
3.  Background limited performance of long wavelength infrared focal plane arrays fabricated from type-II InAs/GaSb M-structure superlattice
P.Y. Delaunay, B.M. Nguyen and M. Razeghi
SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981Q-- April 13, 2009 ...[Visit Journal]
Recent advances in growth techniques, structure design and processing have lifted the performance of Type-II InAs/GaSb superlattice photodetectors. The introduction of a M-structure design improved both the dark current and R0A of Type-II photodiodes. This new structure combined with a thick absorbing region demonstrated background limited performance at 77K for a 300K background and a 2-π field of view. A focal plane array with a 9.6 μm 50% cutoff wavelength was fabricated with this design and characterized at 80K. The dark current of individual pixels was measured around 1.3 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without anti-reflective coating was 72%. The noise equivalent temperature difference reached 23 mK. The deposition of an anti-reflective coating improved the NEDT to 20 mK and the quantum efficiency to 89%. [reprint (PDF)]
 
3.  Type–II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor
Arash Dehzangi, Ryan McClintock, Abbas Haddadi, Donghai Wu, Romain Chevallier, Manijeh Razeghi
Scientific Reports volume 9, Article number: 5003 -- March 21, 2019 ...[Visit Journal]
Visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor based on type–II InAs/AlSb/GaSb superlattices have been demonstrated. The photodetectors are designed to have a 100% cut-off wavelength of ~2.4 μm at 300K, with sensitivity down to visible wavelengths. The photodetectors exhibit room–temperature (300K) peak responsivity of 0.6 A/W at ~1.7 μm, corresponding to a quantum efficiency of 43% at zero bias under front–side illumination, without any anti–reflection coating where the visible cut−on wavelength of the devices is <0.5 µm. With a dark current density of 5.3 × 10−4 A/cm² under −20 mV applied bias at 300K, the photodetectors exhibit a specific detectivity of 4.72 × 1010 cm·Hz½W-1. At 150K, the photodetectors exhibit a dark current density of 1.8 × 10−10 A/cm² and a quantum efficiency of 40%, resulting in a detectivity of 5.56 × 1013 cm·Hz½/W [reprint (PDF)]
 
3.  Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice
F. Callewaert, A.M. Hoang, and M. Razeghi
Applied Physics Letters, 104, 053508 (2014)-- February 6, 2014 ...[Visit Journal]
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10−5 A/cm² and a differential resistance-area of 3 700 Ω·cm² are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 1011 Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current. [reprint (PDF)]
 
3.  Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes
E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, 89 (24)-- December 11, 2006 ...[Visit Journal]
The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined [reprint (PDF)]
 
3.  Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection
G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal]
New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)]
 
3.  High power, room temperature, Terahertz sources and frequency comb based on Difference frequency generation at CQD
Manijeh Razeghi
Proc. of SPIE 12230, 1223006, September 2022 ...[Visit Journal]
Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG)and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. [reprint (PDF)]
 
3.  Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Feihu Wang, Steven Slivken, and Manijeh Razeghi
OSA Photonics Research •https://doi.org/10.1364/PRJ.423573 ...[Visit Journal]
High-power, high-speed quantum cascade lasers (QCLs) with stable emission in the mid-infrared regime are of great importance for applications in metrology, telecommunication, and fundamental tests of physics. Owing to the inter-sub-band transition, the unique ultrafast gain recovery time of the QCL with picosecond dynamics is expected to overcome the modulation limit of classical semiconductor lasers and bring a revolution for the next generation of ultrahigh-speed optical communication. Therefore, harmonic injection locking, offering the possibility to fast modulate and greatly stabilize the laser emission beyond the rate limited by cavity length, is inherently adapted to QCLs. In this work, we demonstrate for the first time the harmonic injection locking of a mid-infrared QCL with an output power over 1 watt in continuous-wave operation at 288 K. Compared with an unlocked laser, the inter-mode spacing fluctuation of an injection locked QCL can be considerably reduced by a factor above 1×10 E3, which permits the realization of an ultra-stable mid-infrared semiconductor laser with high phase coherence and frequency purity. Despite temperature change, this fluctuation can be still stabilized to hertz level by a microwave modulation up to ∼18 GHz. These results open up the prospect of the applications of mid-infrared QCL technology for frequency comb engineering, metrology and the next generation ultrahigh-speed telecommunication. It may also stimulate new schemes for exploring ultrafast mid-infrared pulse generation in QCLs. [reprint (PDF)]
 
3.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
3.  The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan
SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal]
The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)]
 
3.  High performance LWIR Type-II InAs/GaSb superlattice photodetectors and infrared focal plane array
Y. Wei, A. Hood, A. Gin, V. Yazdanpanah, M. Razeghi and M. Tidrow
SPIE Conference, Jose, CA, Vol. 5732, pp. 309-- January 22, 2005 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs-GaSb superlattices grown on n-type GaSb substrate with a 50% cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal]
A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5  A/cm2 providing a specific detectivity of ∼2×1011  cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10  mV, the device’s dark current density was 5.5×10−8  A/cm2. At zero bias, its specific detectivity was 1×1011  cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2  V bias voltage, the device exhibited a dark current density of 1.8×10−6  A/cm2 providing a specific detectivity of 6.3×1011  cm·Hz1/2/W at 150K. [reprint (PDF)]
 
3.  Recent advances in InAs/InAs1- xSbx/AlAs1-xSbx gap-engineered Type-II superlattice-based photodetectors
Manijeh Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang
Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705 -- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  Gas sensing spectroscopy system utilizing a sample grating distributed feedback quantum cascade laser array and type II superlattice detector
Nathaniel R. Coirier; Andrea I. Gomez-Patron; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128815-- January 31, 2020 ...[Visit Journal]
Gas spectroscopy is a tool that can be used in a variety of applications. One example is in the medical field, where it can diagnose patients by detecting biomarkers in breath, and another is in the security field, where it can safely alert personnel about ambient concentrations of dangerous gas. In this paper, we document the design and construction of a system compact enough to be easily deployable in defense, healthcare, and chemical safety environments. Current gas sensing systems use basic quantum cascade lasers (QCLs) or distributed feedback quantum cascade lasers (DFB QCLs) with large benchtop signal recovery systems to determine gas concentrations. There are significant issues with these setups, namely the lack of laser tunability and the lack of practicality outside of a very clean lab setting. QCLs are advantageous for gas sensing purposes because they are the most efficient lasers at the mid infrared region (MIR). This is necessary since gases tend to have stronger absorption lines in the MIR range than in the near-infrared (NIR) region. To incorporate the efficiency of a QCL with wide tuning capabilities in the MIR region, sampled grating distributed feedback (SGDFB) QCLs are the answer as they have produced systems that are widely tunable, which is advantageous for scanning a robust and complete absorption spectrum. The system employs a SGDFB QCL array emitter, a Type II InAsSb Superlattice detector receiver, a gas cell, and a cooling system. [reprint (PDF)]
 
3.  The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal]
A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)]
 
3.  High performance Type-II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan
SPIE Conference, Orlando, FL, Vol. 5783, pp. 86-- March 28, 2005 ...[Visit Journal]
We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type-II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 µm up to 32 µm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays are presented. [reprint (PDF)]
 
3.  High Frequency Extended Short-Wavelength Infrared Heterojunction Photodetectors Based on InAs/GaSb/AlSb Type-II Superlattices
Romain Chevallier, Abbas Haddadi, Ryan McClintock, Arash Dehzangi , Victor Lopez-Dominguez, Pedram Khalili Amiri, Manijeh Razeghi
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 6-- December 1, 2018 ...[Visit Journal]
InAs/GaSb/AlSb type-II superlattice-based photodetectors, with 50% cut-off wavelength of 2.1 µm and a −3 dB cut-off frequency of 4.8 GHz, are demonstrated, for 10 µm diameter circular mesas under 15 V applied reverse bias. A study of the cut-off frequency with applied bias and mesa size was performed to evaluate some of the limiting factors of photodetectors high frequency performance. [reprint (PDF)]
 
3.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 
3.  Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal]
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)]
 
3.  Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino
Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal]
Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)]
 
3.  Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes
A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal]
The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)]
 
3.  Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi
Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal]
Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)]
 

Page 4 of 27:  Prev << 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)