About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 3 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
5. | Type–II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor Arash Dehzangi, Ryan McClintock, Abbas Haddadi, Donghai Wu, Romain Chevallier, Manijeh Razeghi Scientific Reports volume 9, Article number: 5003 -- March 21, 2019 ...[Visit Journal] Visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor based on type–II InAs/AlSb/GaSb superlattices have been demonstrated. The photodetectors are designed to have a 100% cut-off wavelength of ~2.4 μm at 300K, with sensitivity down to visible wavelengths. The photodetectors exhibit room–temperature (300K) peak responsivity of 0.6 A/W at ~1.7 μm, corresponding to a quantum efficiency of 43% at zero bias under front–side illumination, without any anti–reflection coating where the visible cut−on wavelength of the devices is <0.5 µm. With a dark current density of 5.3 × 10−4 A/cm² under −20 mV applied bias at 300K, the photodetectors exhibit a specific detectivity of 4.72 × 1010 cm·Hz½W-1. At 150K, the photodetectors exhibit a dark current density of 1.8 × 10−10 A/cm² and a quantum efficiency of 40%, resulting in a detectivity of 5.56 × 1013 cm·Hz½/W [reprint (PDF)] |
5. | High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si Steven Slivken and Manijeh Razeghi Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal] We report on the realization of an InP-based long
wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth
was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power
(>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)] |
4. | Pulsed metalorganic chemical vapor deposition of high quality AlN/GaN superlattices for intersubband transitions C. Bayram, B. Fain, N. Pere-Laperne, R. McClintock and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-12-- January 26, 2009 ...[Visit Journal] A pulsed metalorganic chemical vapor deposition (MOCVD) technique, specifically designed for high quality AlN/GaN superlattices (SLs) is introduced. Optical quality and precise controllability over layer thicknesses are investigated. Indium is shown to improve interface and surface quality. An AlN/GaN SL designed for intersubband transition at a telecommunication wavelength of ~1.5 µm, is grown, and processed for intersubband (ISB) absorption measurements. Room temperature measurements show intersubband absorption centered at 1.49 µm. Minimal (n-type) silicon doping of the well is shown to be crucial for good ISB absorption characteristics. The potential to extend this technology into the far infrared and even the terahertz (THz) region is also discussed. [reprint (PDF)] |
4. | High power 1D and 2D photonic crystal distributed feedback quantum cascade lasers B. Gokden, Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79450C-- January 23, 2011 ...[Visit Journal] For many practical applications that need bright sources of mid-infrared radiation, single mode operation and good beam quality are also required. Quantum cascade lasers are prominent candidates as compact sources of mid-infrared radiation capable of delivering very high power both CW and under pulsed operation. While 1D photonic crystal distributed feedback structures can be used to get single mode operation from quantum cascade lasers with narrow ridge widths, novel 2D photonic crystal cavity designs can be used to improve spectral and spatial purity of broad area quantum cascade lasers. In this paper, we demonstrate high power, spatially and spectrally pure operation at room temperature from narrow ridge and broad area quantum cascade lasers with buried 1D and 2D photonic crystal structures. Single mode continuous wave emission at λ = 4.8 μm up to 700 mW in epi-up configuration at room temperature was observed from a 11 μm wide 5 mm long distributed feedback quantum cascade laser with buried 1D gratings. High peak powers up to 34 W was obtained from a 3mm long 400 μm wide 2D photonic crystal distributed feedback laser at room temperature under pulsed operation. The far field profile had a single peak normal to the laser facet and the M2 figure of merit was as low as 2.5. Emission spectrum had a dominating single mode at λ = 4.36 μm. [reprint (PDF)] |
4. | Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi Applied Physics Letters 88 (4)-- January 23, 2006 ...[Visit Journal] High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. [reprint (PDF)] |
4. | Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi Applied Physics Letters, Vol. 102, No. 1, p. 011108-1-- January 7, 2013 ...[Visit Journal] High performance bias-selectable dual-band short-/mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm was demonstrated. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0 × 10−9 A/cm² at −50 mV bias voltage, providing an associated shot noise detectivity of 3.0 × 1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6 × 10−5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0 × 1011 Jones. The spectral cross-talk between the two channels was also discussed for further optimization. [reprint (PDF)] |
4. | Long-term reliability of Al-free InGaAsP/GaAs λ = 808 nm) lasers at high-power high-temperature operation J. Diaz, H. Yi, M. Razeghi and G.T. Burnham Applied Physics Letters 71 (21)-- November 24, 1997 ...[Visit Journal] We report the long-term reliability measurement on uncoated Al-free InGaAsP/GaAs (λ = 808 nm) lasers at high-power and high-temperature operation. No degradation in laser performance has been observed for over 30 ,000 h of lifetime testing in any of randomly selected several 100 μm-wide uncoated lasers operated at 60 °C with 1 W continuous wave output power. This is the first and the most conclusive evidence ever reported that directly shows the high long-term reliability of uncoated Al-free lasers. [reprint (PDF)] |
4. | High power InAsSb/InPAsSb/InAs mid-infrared lasers A. Rybaltowski, Y. Xiao, D. Wu, B. Lane, H. Yi, H. Feng, J. Diaz, and M. Razeghi Applied Physics Letters 71 (17)-- October 27, 1997 ...[Visit Journal] We demonstrate high-power InAsSb/InPAsSb laser bars (λ ≈ 3.2 μm) consisting of three 100 μm-wide laser stripes of 700 μm cavity length, with peak output power up to 3 W at 90 K, and far-fields for the direction perpendicular to the junction as narrow as 12° full width half maximum. Spectra and far-field patterns of the laser bars are shown to have excellent characteristics for a wide range of operating conditions, suggesting the possibility of even higher light power emission with good beam quality. Joule heating is shown to be the major factor limiting higher power operation. [reprint (PDF)] |
4. | Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal] Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)] |
4. | High power frequency comb based on mid-infrared quantum cascade laser at λ ~9μm Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori Appl. Phys. Lett. 106, 051105-- February 2, 2015 ...[Visit Journal] We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm−1 and a high power output of 180 mW for ∼176 comb modes. [reprint (PDF)] |
4. | Investigation of MgZnO/ZnO heterostructures grown on c-sapphire substrates by pulsed laser deposition D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; A. Lusson ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86261X (March 18, 2013)-- March 18, 2013 ...[Visit Journal] MgZnO thin films were grown on c-sapphire and ZnO-coated c-sapphire substrates by pulsed laser deposition from a ZnMgO target with 4 at% Mg. The MgZnO grown on the ZnO underlayer showed significantly better crystal quality than that grown directly on sapphire. AFM studies revealed a significant deterioration in surface morphology for the MgZnO layers compared with the ZnO underlayer. Optical transmission studies indicated a MgZnO bandgap of 3.61eV (compared with 3.34eV for the ZnO), which corresponds to a Mg content of about 16.1 at%. The MgZnO/ZnO heterojunction showed an anomalously low resistivity, which was more than two orders of magnitude less than the MgZnO layer and an order of magnitude lower than that for the ZnO layer. It was suggested that this may be attributable to the presence of a 2D electron gas at the ZnMgO/ZnO heterointerface. [reprint (PDF)] |
4. | A Crystallographic Model of (00*1) Aluminum Nitride Epitaxial Thin Film Growth on (00*1) Sapphire Substrate C.J. Sun, P. Kung, A. Saxler, H. Ohsato, M. Razeghi, and K. Haritos Journal of Applied Physics 75 (8)-- April 15, 1994 ...[Visit Journal] A direct comparison of the physical properties of GaN thin films is made as a function of the choice of substrate orientations. Gallium nitride single crystals were grown on (0001) and (011-bar 2) sapphire substrates by metalorganic chemical vapor deposition. Better crystallinity with fine ridgelike facets is obtained on the (011-bar 2) sapphire. Also lower carrier concentration and higher mobilities indicate both lower nitrogen vacancies and less oxygen incorporation on the (011-bar 2) sapphire. The results of this study show better physical properties of GaN thin films achieved on (011-bar 2) sapphire. [reprint (PDF)] |
4. | Thin-Film Antimonide-Based Photodetectors Integrated on Si Yiyun Zhang , Member, IEEE, Abbas Haddadi, Member, IEEE, Romain Chevallier, Arash Dehzangi, Member, IEEE, and Manijeh Razeghi , Life Fellow, IEEE IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 2-- April 1, 2018 ...[Visit Journal] Monolithic integration of antimonide (Sb)-based
compound semiconductors on Si is in high demand to enrich silicon photonics by extending the detection range to longer infrared wavelengths. In this paper, we have demonstrated the damage-free transfer of large-area (1×1 cm² ) narrow-bandgap Sb-based type-II superlattice (T2SL)-based thin-film materials onto a Si substrate using a combination of wafer-bonding and chemical epilayer release techniques. An array of Sb-based T2SL-based long-wavelength infrared (LWIR) photodetectors with diameters from 100 to 400 μm has been successfully fabricated using standard "top–down" processing technique. The transferred LWIR photodetectors exhibit a cut-off wavelength of λ 8.6 μm at 77 K. The dark current density of the transferred photodetectors under 200 mV applied bias at 77 K is as low as
5.7×10−4 A/cm² and the R×A reaches 66.3 Ω·cm², exhibiting no electrical degradation compared with reference samples on GaSb native substrate. The quantum efficiency and peak responsivity at 6.75 μm (@77 K, 200 mV) are 46.2% and 2.44 A/W, respectively. The specific detectivity (D*) at 6.75 μm reaches as
high as 1.6×1011 cm·Hz1/2/W under 200 mV bias at 77 K. Our method opens a reliable pathway to realize high performance
and practical Sb-based optoelectronic devices on a Si platform.
[reprint (PDF)] |
4. | Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing Gre´gory Barbillon, Vinod E. Sandana,Christophe Humbert, Benoit Be´lier, David J. Rogers, Ferechteh H. Teherani, Philippe Bove Ryan McClintock and Manijeh Razeghid J. Mater. Chem. C, 2017, 5, 3528-- March 20, 2017 ...[Visit Journal] At present, the simultaneous attainment of good reproducibility and high enhancement factors (EF) are key challenges in the development of surface enhanced Raman scattering (SERS)substrates for improved chemical and biological sensing. SERS
substrates are generally based on distributions of metallic nanoparticles/structures with different shapes and architectures which are prepared by either thermal dewetting, precipitation
from colloidal suspensions1–4 or advanced (e.g. deep UV or electron beam (EBL)) lithographic techniques.5–9 Although such substrates can exhibit large Raman enhancements, the former
two techniques (colloidal and thermal dewetting) give poor SERS reproducibility while deep UV and EBL are too expensive and/or complex for mass production. |
4. | On the interface properties of ZnO/Si electroluminescent diodes J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010 ...[Visit Journal] ZnO layers grown on n−–Si(100), n+–Si(100), and n––Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. [reprint (PDF)] |
4. | Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire S. Gautier, T. Moudakir, G. Patriarche, D.J. Rogers, V.E. Sandana, F. Hosseini Teherani, P. Bove, Y. El Gmili, K. Pantzas, Suresh Sundaram, D. Troadec, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 370, Pages 63-67 (2013)-- May 1, 2013 ...[Visit Journal] GaN thin films were grown on ZnO/c-Al2O3 with excellent uniformity over 2 in. diameter wafers using a low temperature/pressure MOVPE process with N2 as a carrier and dimethylhydrazine as an N source. 5 mm×5 mm sections of similar GaN layers were direct-fusion-bonded onto soda lime glass substrates after chemical lift-off from the sapphire substrates. X-Ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy confirmed the bonding of crack-free wurtzite GaN films onto a glass substrate with a very good quality of interface, i.e. continuous/uniform adherence and absence of voids or particle inclusions. Using this approach, (In) GaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming the expensive sapphire substrate so it can be utilized again for growth. [reprint (PDF)] |
4. | Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection Romain Chevallier, Arash Dehzangi, Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4299-4302-- October 17, 2017 ...[Visit Journal] A versatile infrared imager capable of imaging the near-visible to the extended short-wavelength infrared (e-SWIR) is demonstrated using e-SWIR InAs/GaSb/AlSb type-II superlattice-based photodiodes. A bi-layer etch-stop scheme consisting of bulk InAs0.91Sb0.09 and AlAs0.1Sb0.9/GaSb superlattice layers is introduced for substrate removal from the hybridized back-side illuminated photodetectors. The implementation of this new technique on an e-SWIR focal plane array results in a significant enhancement in the external quantum efficiency (QE) in the 1.8–0.8μm spectral region, while maintaining a high QE at wavelengths longer than 1.8μm. Test pixels exhibit 100% cutoff wavelengths of ∼2.1 and ∼2.25μm at 150 and 300K, respectively. They achieve saturated QE values of 56% and 68% at 150 and 300K, respectively, under back-side illumination and without any anti-reflection coating. At 150K, the photodetectors (27μm×27μm area) exhibit a dark current density of 4.7×10−7 A/cm2 under a −50 mV applied bias providing a specific detectivity of 1.77×1012 cm·Hz1/2/W. At 300K, the dark current density reaches 6.6×10−2 A/cm2 under −50 mV bias, providing a specific detectivity of 5.17×109 cm·Hz1/2/W. [reprint (PDF)] |
4. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
4. | High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi Appl. Phys. Lett. 104, 251105 (2014)-- June 23, 2014 ...[Visit Journal] Very long wavelength infrared photodetectors based on InAs/InAsSb Type-II superlattices are demonstrated on GaSb substrate. A heterostructure photodiode was grown with 50% cut-off wavelength of 14.6 μm. At 77 K, the photodiode exhibited a peak responsivity of 4.8 A/W, corresponding to a quantum efficiency of 46% at −300 mV bias voltage from front side illumination without antireflective coating. With the dark current density of 0.7 A/cm², it provided a specific detectivity of 1.4 × 1010 Jones. The device performance was investigated as a function of operating temperature, revealing a very stable optical response and a background limited performance below 50 K. [reprint (PDF)] |
4. | Solar-blind avalanche photodiodes R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal] There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)] |
4. | High operating temperature MWIR photon detectors based on Type-II InAs/GaSb superlattice M. Razeghi, B.M. Nguyen, P.Y. Delaunay, S. Abdollahi Pour, E.K.W. Huang, P. Manukar, S. Bogdanov, and G. Chen SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76081Q-1-- January 22, 2010 ...[Visit Journal] Recent efforts have been paid to elevate the operating temperature of Type-II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300 K-background BLIP operation temperature to 166 K. At 77 K, the ~4.2 µm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ω·cm²) and a detectivity of 3x1013 cm·Hz½·W−1. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10 mK at 77 K. Uncooled camera is capable to capture hot objects such as soldering iron. [reprint (PDF)] |
4. | High power quantum cascade lasers M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S.R. Darvish New Journal of Physics (NJP), Volume 11, p. 125017-- December 1, 2009 ...[Visit Journal] We report the most recent state-of-art quantum cascade laser results at wavelengths around 4.8 and 10 μm. At 4.8 μm, a room temperature wall plug efficiency (WPE) of 22 and 15.5% are obtained in pulsed mode and continuous wave (cw) mode, respectively. Room temperature cw output power reaches 3.4 W. The same laser design is able to reach a WPE of 36% at 120 K in pulsed mode. At 10 μm, room temperature average power of 2.2 W and cw power of 0.62 W are obtained. We also explore lasers utilizing the photonic crystal distributed feedback mechanism, and we demonstrate up to 12 W peak power operation at three different wavelengths around 4.7 μm with a waveguide width of 100 μm and diffraction limited beam quality. [reprint (PDF)] |
4. | High performance antimony based type-II superlattice photodiodes on GaAs substrates B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981T-- April 13, 2009 ...[Visit Journal] In recent years, Type-II InAs/GaSb superlattices grown on GaSb substrate have achieved significant
advances in both structural design and material growth, making Type-II superlattice infrared detector a rival competitor to the state-of-the-art MCT technology. However, the limited size and strong
infrared absorption of GaSb substrates prevent large format type-II superlattice infrared imagers from
being realized. In this work, we demonstrate type-II superlattices grown on GaAs substrates, which is a significant step toward third generation infrared imaging at low cost. The device performances of Type-II superalttice photodetectors grown on these two substrates are compared. [reprint (PDF)] |
4. | Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008 ...[Visit Journal] We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. [reprint (PDF)] |
4. | Demonstration of InAsSb/AlInSb Double Heterostructure Detectors for Room Temperature Operation in the 5–8 μm Wavelength Range J.S. Wojkowski, H. Mohseni, J.D. Kim, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the first demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation. The structures were grown in a solid source molecular beam epitaxy reactor on semi-insulating GaAs substrate. The material was processed to 400x400 micrometer mesas using standard photolithography, etching, and metallization techniques. No optical immersion or surface passivation was used. The photovoltaic detectors showed a cutoff wavelength at 8 micrometer at 300 K. The devices showed a high quantum efficiency of 40% at 7 μm at room temperature. A responsivity of 300 mA/W was measured at 7 μm under a reverse bias of 0.25 V at 300 K resulting in a Johnson noise limited detectivity of 2x108 cm·Hz½/W. [reprint (PDF)] |
Page 3 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|