Page 3 of 5:  Prev << 1 2 3  4 5  >> Next  (114 Items)

1.  Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi, S. Abdollahi Pour, and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 211101-1-- May 21, 2012 ...[Visit Journal]
We demonstrate the feasibility of the InAs/GaSb/AlSb type-II superlattice photodiodes operating at the short wavelength infrared regime below 3  μm. An n-i-p type-II InAs/GaSb/AlSb photodiode was grown with a designed cut-off wavelength of 2 μm on a GaSb substrate. At 150  K, the photodiode exhibited a dark current density of 5.6 × 10−8 A/cm² and a front-side-illuminated quantum efficiency of 40.3%, providing an associated shot noise detectivity of 1.0 × 1013 Jones. The uncooled photodiode showed a dark current density of 2.2 × 10−3 A/cm² and a quantum efficiency of 41.5%, resulting in a detectivity of 1.7 × 1010 Jones [reprint (PDF)]
 
1.  Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers
Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi
J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal]
Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)]
 
1.  Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature
A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal]
Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)]
 
1.  Evaluating the size-dependent quantum efficiency loss in a SiO2-Y2O3 hybrid gated type-II InAs/GaSb long-infrared photodetector array
G. Chen , A. M. Hoang , and M. Razeghi
Applied Physics Letters 104 , 103509 (2014)-- March 14, 2014 ...[Visit Journal]
Growing Y2O3 on 20 nm SiO2 to passivate a 11 μm 50% cut-off wavelength long-wavelength infrared type-II superlattice gated photodetector array reduces its saturated gate bias (VGsat ) to −7 V. Size-dependent quantum efficiency (QE) losses are evaluated from 400 μm to 57 μm size gated photodiode. Evolution of QE of the 57 μm gated photodiode with gate bias and diode operation bias reveals different surface recombination mechanisms. At 77 K and VG,sat , the 57 μm gated photodiode exhibits QE enhancement from 53% to 63%, and it has 1.2 × 10−5 A/cm² dark current density at −200 mV, and a specific detectivity of 2.3 × 1012 Jones. [reprint (PDF)]
 
1.  Development of high power, InP-based quantum cascade lasers on alternative epitaxial platforms
Steven Slivken, Nirajman Shrestha, Manijeh Razeghi
Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 1289503 (28 January - 1 February 2024, San Francisco) doi: 10.1117/12.3009335 ...[Visit Journal]
In this talk, challenges and solutions associated with the monolithic, epitaxial integration of mid- and longwave- infrared, InP-based quantum cascade lasers on GaAs and Si wafers will be discussed. Initial results, including room temperature, high power, and continuous wave operation, will be described. [reprint (PDF)]
 
1.  Recent advances in mid infrared (3-5 μm) quantum cascade lasers
Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken
Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal]
Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)]
 
1.  Monolithic terahertz source
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Nature Photonics | Research Highlights -- July 31, 2014 ...[Visit Journal]
To date, the production of continuous-wave terahertz (THz) sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers operating at room temperature has proved elusive. A critical problem is that, to achieve a large nonlinear susceptibility for frequency conversion, the active region of the quantum cascade laser requires high doping, which elevates the lasing threshold current density. Now, Quan-Yong Lu and colleagues from Northwestern University in the USA have overcome this problem and demonstrated a room-temperature continuous-wave THz source based on difference-frequency generation in quantum cascade lasers. They designed quantum-well structures based on In0.53Ga0.47As/In0.52Al0.48As material system for two mid-infrared wavelengths. The average doping in the active region was about 2.5 × 1016 cm−3. A buried ridge, buried composite distributed-feedback waveguide with the Čerenkov phase-matching scheme was used to reduce the waveguide loss and enhance heat dissipation. As a result, single-mode emission at 3.6 THz was observed at 293 K. The continuous-wave THz power reached 3 μW with a conversion efficiency of 0.44 mW W−2 from mid-infrared to THz waves. Using a similar device design, a THz peak power of 1.4 mW was achieved in pulse mode. [reprint (PDF)]
 
1.  High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs
Steven Slivken and Manijeh Razeghi
Photonics 2022, 9(4), 231 (COVER ARTICLE) ...[Visit Journal]
The motivation behind this work is to show that InP-based intersubband lasers with high power can be realized on substrates with significant lattice mismatch. This is a primary concern for the integration of mid-infrared active optoelectronic devices on low-cost photonic platforms, such as Si. As evidence, an InP-based mid-infrared quantum cascade laser structure was grown on a GaAs substrate, which has a large (4%) lattice mismatch with respect to InP. Prior to laser core growth, a metamorphic buffer layer of InP was grown directly on a GaAs substrate to adjust the lattice constant. Wafer characterization data are given to establish general material characteristics. A simple fabrication procedure leads to lasers with high peak power (>14 W) at room temperature. These results are extremely promising for direct quantum cascade laser growth on Si substrates. [reprint (PDF)]
 
1.  8-13 μm InAsSb heterojunction photodiode operating at near room temperature
J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi
Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal]
p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)]
 
1.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
1.  Mid-infrared quantum cascade lasers with high wall plug efficiency
Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal]
We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)]
 
1.  Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020 ...[Visit Journal]
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 
1.  Room temperature compact THz sources based on quantum cascade laser technology
M. Razeghi; Q.Y. Lu; N. Bandyopadhyay; S. Slivken; Y. Bai
Proc. SPIE 8846, Terahertz Emitters, Receivers, and Applications IV, 884602 (September 24, 2013)-- November 24, 2013 ...[Visit Journal]
We present the high performance THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Room temperature single-mode operation in a wide THz spectral range of 1-4.6 THz is demonstrated from our Čerenkov phase-matched THz sources with dual-period DFB gratings. High THz power up to 215 μW at 3.5 THz is demonstrated via epi-down mounting of our THz device. The rapid development renders this type of THz sources promising local oscillators for many astronomical and medical applications. [reprint (PDF)]
 
1.  Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal]
We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage. [reprint (PDF)]
 
1.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal]
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)]
 
1.  Comparison of the Physical Properties of GaN Thin Films Deposited on (0112) and (0001) Sapphire Substrates
C.J. Sun and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
A direct comparison of the physical properties of GaN thin films is made as a function of the choice of substrate orientations. Gallium nitride single crystals were grown on (0001) and (0112) sapphire substrates by metalorganic chemical vapor deposition. Better crystallinity with fine ridgelike facets is obtained on the (0112) sapphire. Also lower carrier concentration and higher mobilities indicate both lower nitrogen vacancies and less oxygen incorporation on the (0112) sapphire. The results of this study show better physical properties of GaN thin films achieved on (0112) sapphire. [reprint (PDF)]
 
1.  High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection
A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi
Appl. Phys. Lett. 104, 251105 (2014)-- June 23, 2014 ...[Visit Journal]
Very long wavelength infrared photodetectors based on InAs/InAsSb Type-II superlattices are demonstrated on GaSb substrate. A heterostructure photodiode was grown with 50% cut-off wavelength of 14.6 μm. At 77 K, the photodiode exhibited a peak responsivity of 4.8 A/W, corresponding to a quantum efficiency of 46% at −300 mV bias voltage from front side illumination without antireflective coating. With the dark current density of 0.7 A/cm², it provided a specific detectivity of 1.4 × 1010 Jones. The device performance was investigated as a function of operating temperature, revealing a very stable optical response and a background limited performance below 50 K. [reprint (PDF)]
 
1.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 
1.  AlxGa1−xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate
E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi
Appl. Phys. Lett. 103, 181113 (2013)-- October 30, 2013 ...[Visit Journal]
We report on AlxGa1−xN-based solar-blind ultraviolet (UV) photodetector (PD) grown on Si(111) substrate. First, Si(111) substrate is patterned, and then metalorganic chemical vapor deposition is implemented for a fully-coalesced ∼8.5 μm AlN template layer via a pulsed atomic layer epitaxial growth technique. A back-illuminated p-i-n PD structure is subsequently grown on the high quality AlN template layer. After processing and implementation of Si(111) substrate removal, the optical and electrical characteristic of PDs are studied. Solar-blind operation is observed throughout the array; at the peak detection wavelength of 290 nm, 625 μm² area PD showed unbiased peak external quantum efficiency and responsivity of ∼7% and 18.3 mA/W, respectively, with a UV and visible rejection ratio of more than three orders of magnitude. Electrical measurements yielded a low-dark current density below 1.6 × 10−8 A/cm² at 10 V reverse bias. [reprint (PDF)]
 
1.  High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy
SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal]
Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)]
 
1.  Persistent photoconductivity and the quantized Hall effect in In0.53Ga0.47As/InP heterostructures
H. P. Wei; D. C. Tsui; M. Razeghi
H. P. Wei, D. C. Tsui, M. Razeghi; Persistent photoconductivity and the quantized Hall effect in In0.53Ga0.47As/InP heterostructures. Appl. Phys. Lett. 15 September 1984; 45 (6): 666–668.-- September 15, 1984 ...[Visit Journal]
A persistent photoconductivity is observed in the transport of the high mobility two‐dimensional electron gas in In0.53Ga0.47 As/InP heterostructures. Low field Hall measurements from 300 to 4.2 K and the quantized Hall effect in the high field limit are studied with radiation from visible and infrared light‐emitting diodes. Our results demonstrate conclusively that the effect is due to photogeneration of electron‐hole pairs in the heterostructure and trapping of holes in the In0.53Ga0.47 As. [reprint (PDF)]
 
1.  Continuous operation of a monolithic semiconductor terahertz source at room temperature
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 104, 221105 (2014)-- June 3, 2014 ...[Visit Journal]
We demonstrate room temperature continuous wave THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Buried ridge, buried composite distributed-feedback waveguide with Čerenkov phase-matching scheme is used to reduce the waveguide loss and enhance the heat dissipation for continuous wave operation. Continuous emission at 3.6 THz with a side-mode suppression ratio of 20 dB and output power up to 3 μW are achieved, respectively. THz peak power is further scaled up to 1.4 mW in pulsed mode by increasing the mid-infrared power through increasing the active region doping and device area. [reprint (PDF)]
 
1.  InAs quantum dot infrared photodetectors on InP by MOCVD
W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal]
We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)]
 
1.  Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers
Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang
Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
1.  High Power Mid-Infrared Quantum Cascade Lasers Grown on Si
Steven Slivken, Nirajman Shrestha, and Manijeh Razeghi
Photonics, vol. 9, 626 ...[Visit Journal]
This article details the demonstration of a strain-balanced, InP-based mid-infrared quantum cascade laser structure that is grown directly on a Si substrate. This is facilitated by the creation of a metamorphic buffer layer that is used to convert from the lattice constant of Si (0.543 nm) to that of InP (0.587 nm). The laser geometry utilizes two top contacts in order to be compatible with future large-scale integration. Unlike previous reports, this device is capable of room temperature operation with up to 1.6 W of peak power. The emission wavelength at 293 K is 4.82 um, and the device operates in the fundamental transverse mode. [reprint (PDF)]
 

Page 3 of 5:  Prev << 1 2 3  4 5  >> Next  (114 Items)