Page 25 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  26 27 28  >> Next  (676 Items)

1.  Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window
H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel
IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  Relaxation kinetics in quantum cascade laser
S. Slivken, V. Litvinov, M. Razeghi, and J.R. Meyer
Journal of Applied Physics 85 (2)-- January 15, 1999 ...[Visit Journal]
Relaxation kinetics in a quantum cascade intersubband laser are investigated. Distribution functions and gain spectra of a three-subband double-quantum-well active region are obtained as a function of temperature and injection current. The potentially important role of the nonequilibrium phonons at lasing threshold is shown and discussed in details. It is shown that the threshold current is strongly dependent of the power dissipated in the active region in steady state. The numerical calculations for an 8.5 μm laser illustrate the general issues of relaxation kinetics in quantum cascade lasers. Temperature dependence of the threshold current is obtained in a good agreement with the experiments. [reprint (PDF)]
 
1.  Long-Wavelength InAsSb Photoconductors Operated at Near Room Temperatures (200-300 K)
J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi
Applied Physics Letters., 68 (1),-- January 1, 1996 ...[Visit Journal]
Long-wavelength InAs1−xSbx photoconductors operated without cryogenic cooling are reported. The devices are based on p-InAs1−xSbx/p-InSb heterostructures grown on (100) semi-insulating GaAs substrates by low pressure metalorganic chemical vapor deposition (LP‐MOCVD). Photoreponse up to 14 μm has been obtained in a sample with x=0.77 at 300 K, which is in good agreement with the measured infrared absorption spectra. The corresponding effective lifetime of ≊0.14 ns at 300 K has been derived from stationary photoconductivity. The Johnson noise limited detectivity at λ=10.6 μm is estimated to be about 3.27×107 cm· Hz½/W at 300 K. [reprint (PDF)]
 
1.  Efficiency of photoluminescence and excess carrier confinement in InGaAsP/GaAs structures prepared by metal-organic chemical vapor deposition
J. Diaz, H.J. Yi, M. Erdtmann, X. He, E. Kolev, D. Garbuzov, E. Bigan, and M. Razeghi
Journal of Applied Physics 76 (2)-- July 15, 1994 ...[Visit Journal]
Special double‐ and separate‐confinement InGaAsP/GaAs heterostructures intended for photoluminescence measurements have been grown by low‐pressure metal‐organic chemical‐vapor deposition. The band gap of the active region quaternary material was close to 1.5 eV, and the waveguide of the separate‐confinement structures was near 1.8 eV. Measurement of the integrated luminescence efficiency at 300 K has shown that over a wide range of excitation level (10–103 W/cm²) radiative transitions are the dominant mechanism for excess carrier recombination in the active region of the structures studied. As determined by spectral measurements, the excess carrier concentration in the waveguide of the separate‐confinement heterostructures and the intensity of the waveguide emission band correspond to a condition of thermal equilibrium of the excess carrier populations in the active region and the waveguide. The ratio of the intensity of the waveguide emission to the active region emission fits a model which assumes that the barrier height for minority carriers (holes) is equal to the difference in band gaps between the active region and the waveguide region. [reprint (PDF)]
 
1.  Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal]
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)]
 
1.  Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation
Quanyong Lu and Manijeh Razeghi
Photonics, 3, 42-- July 7, 2016 ...[Visit Journal]
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications. [reprint (PDF)]
 
1.  Growth of “moth-eye” ZnO nanostructures on Si(111), c-Al2O3, ZnO and steel substrates by pulsed laser deposition
Vinod E. Sandana, David J. Rogers, Ferechteh Hosseini Teherani, Philippe Bove, Michael Molinari, Michel Troyon, Alain Largeteau, Gérard Demazeau, Colin Scott, Gaelle Orsal, Henri-Jean Drouhin, Abdallah Ougazzaden, Manijeh Razeghi
Phys. Status Solidi C., 1-5 (2013)-- August 6, 2013 ...[Visit Journal]
Self-forming, vertically-aligned, arrays of black-body-like ZnO moth-eye nanostructures were grown on Si(111), c-Al2O3, ZnO and high manganese austenitic steel substrates using Pulsed Laser Deposition. X-ray diffraction (XRD) revealed the nanostructures to be well-crystallised wurtzite ZnO with strong preferential c-axis crystallographic orientation along the growth direction for all the substrates. Cathodoluminescence (CL) studies revealed emission characteristic of the ZnO near band edge for all substrates. Such moth-eye nanostructures have a graded effective refractive index and exhibit black-body characteristics. Coatings with these features may offer improvements in photovoltaic and LED performance. Moreover, since ZnO nanostructures can be grown readily on a wide range of substrates it is suggested that such an approach could facilitate growth of GaN-based devices on mismatched and/or technologically important substrates, which may have been inaccessible till present. [reprint (PDF)]
 
1.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 
1.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm
B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010 ...[Visit Journal]
We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. [reprint (PDF)]
 
1.  Photonic crystal distributed feedback quantum cascade lasers with 12 W output power
Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal]
We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)]
 
1.  High-performance, continuous-wave quantum-cascade lasers operating up to 85° C at λ ~ 8.8 μm
J.S. Yu, S. Slivken, A. Evans, and M. Razeghi
Applied Physics A: Materials Science & Processing, Vo. 93, No. 2, p. 405-408-- November 1, 2008 ...[Visit Journal]
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA·cm-2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively. [reprint (PDF)]
 
1.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007 ...[Visit Journal]
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). [reprint (PDF)]
 
1.  High-power λ ~ 9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode
J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, and M. Razeghi
Applied Physics Letters, 88 (9)-- February 27, 2006 ...[Visit Journal]
We report high-power continuous-wave (cw) operation of λ~9.5 μm quantum-cascade lasers to a temperature of 318 K. A high-reflectivity-coated 19-μm-wide and 3-mm-long device exhibits cw output powers as high as 150 mW at 288 K and still 22 mW at 318 K. In cw operation at 298 K, a threshold current density of 1.57 kA/cm2, a slope efficiency of 391 mW/A, and a maximum wall-plug efficiency of 0.71% are obtained. [reprint (PDF)]
 
1.  Beam Steering in High-Power CW Quantum Cascade Lasers
W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005 ...[Visit Journal]
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. [reprint (PDF)]
 
1.  Demonstration of 256x256 Focal Plane Arrays Based on Al-free GaInAs/InP QWIP
J. Jiang, K. Mi, R. McClintock, M. Razeghi, G.J. Brown, and C. Jelen
IEEE Photonics Technology Letters 15 (9)-- September 1, 2003 ...[Visit Journal]
We report the first demonstration of an infrared focal plane array based on aluminum-free GaInAs-InP quantum-well infrared photodetectors (QWIPs).A unique positive lithography method was developed to perform indium-bump liftoff. The noise equivalent differential temperature (NEΔT) of 29 mK was achieved at 70 K with f/2 optics. [reprint (PDF)]
 
1.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)]
 
1.  High Performance Type-II InAs/GaSb Superlattice Photodiodes
H. Mohseni, Y. Wei, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
We report on the demonstration of high performance p-i-n photodiodes based on Type-II InAs/GaSb superlattices operating in the very long wavelength infrared (VLWIR) range at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices with a 50% cutoff wavelength of λc equals 22 μm show a peak current responsivity about 5.5 A/W at 80 K. The use of binary layers in the superlattice has significantly enhanced the uniformity and reproducibility of the energy gap. The 90% to 10% cut-off energy width of these devices is on the order of 2 kT which is about four times smaller compared to the devices based on InAs/Ga1-xInxSb superlattices. Similar photovoltaic devices with cut-off wavelengths up to 25 μm have been measured at 80 K. Our experimental results shows excellent uniformity over a three inch wafer area, indicating the possibility of VLWIR focal plane arrays based on Type-II superlattices. [reprint (PDF)]
 
1.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
1.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal]
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)]
 
1.  Photovoltaic effects in GaN structures with p-n junction
X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi
Applied Physics Letters 67 (14)-- October 2, 1995 ...[Visit Journal]
Large-area GaN photovoltaic structures with p-n junctions have been fabricated using atmospheric pressure metalorganic chemical vapor deposition. The photovoltaic devices typically exhibit selective spectral characteristics with two narrow peaks of opposite polarity. This can be related to p-n junction connected back‐to‐back with a Schottky barrier. The shape of the spectral characteristic is dependent on the thickness of the n- and p-type regions. The diffusion length of holes in the n-type GaN region, estimated by theoretical modeling of the spectral response shape, was about 0.1 μm. [reprint (PDF)]
 
1.  Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates
C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D.K. Gaskill
Journal of Applied Physics 76 (1)-- July 1, 1994 ...[Visit Journal]
Single crystals of GaN were grown on (0001), (0112) Al2O3 and (0001)Si 6H‐SiC substrates using an atmospheric pressure metalorganic chemical‐vapor‐deposition reactor. The relationship has been studied between the thermal stability of the GaN films and the substrate’s surface polarity. It appeared that the N‐terminated (0001) GaN surface grown on (0001)Si 6H‐SiC has the most stable surface, followed by the nonpolar (1120) GaN surface grown on (0112) Al2O3, while the Ga‐terminated (0001) GaN surface grown on (0001) Al2O3 has the least stable surface. This is explained with the difference in the atomic configuration of each of these surfaces which induces a difference in their thermal decomposition. [reprint (PDF)]
 
1.  Engineering Multi-Section Quantum Cascade Lasers for Broadband Tuning
Steven Slivken and Manijeh Razeghi
Photonics 3, 41-- June 27, 2016 ...[Visit Journal]
In an effort to overcome current limitations to electrical tuning of quantum cascade lasers, a strategy is proposed which combines heterogeneous quantum cascade laser gain engineering with sampled grating architectures. This approach seeks to not only widen the accessible spectral range for an individual emitter, but also compensate for functional non-uniformity of reflectivity and gain lineshapes. A trial laser with a dual wavelength core is presented which exhibits electroluminescence over a 750 cm−1 range and discrete single mode laser emission over a 700 cm−1 range. Electrical tuning over 180 cm−1 is demonstrated with a simple sampled grating design. A path forward to even wider tuning is also described using more sophisticated gain and grating design principles. [reprint (PDF)]
 
1.  High-performance bias-selectable dual-band Short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices
M. Razeghi; A.M. Hoang; A. Haddadi; G. Chen; S. Ramezani-Darvish; P. Bijjam; P. Wijewarnasuriy; E. Decuir
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041W (June 18, 2013)-- June 18, 2013 ...[Visit Journal]
We report a bias selectable dual-band Type-II superlattice-based short-wave infrared (SWIR) and mid-wave infrared (MWIR) co-located photodetector capable of active and passive imaging. A new double-layer etch-stop scheme is introduced for back-side-illuminated photodetectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ∼1×10-5 A/cm2 for the ∼4.2 μm cut-off MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F/2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using and integration time of 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. An excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)]
 
1.  Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi
OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011 ...[Visit Journal]
We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. [reprint (PDF)]
 
1.  Recent Advances in LWIR Type-II InAs/GaSb Superlattice Photodetectors and Focal Plane Arrays at the Center for Quantum Devices
M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, M.Z. Tidrow, and V. Nathan
IEEE Proceedings, Vol. 97, No. 6, p. 1056-1066-- June 1, 2009 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs, and imaging applications. They now appear to be a possible alternative to the state-of-the-art HgCdTe (MCT) technology in the long and very long wavelength infrared regimes. At the Center for Quantum Devices, we have successfully realized very high quantum efficiency, very high dynamic differential resistance R0A - product LWIR Type – II InAs/GaSb superlattice photodiodes with efficient surface passivation techniques. The demonstration of high quality LWIR Focal Plane Arrays that were 100 % fabricated in - house reaffirms the pioneer position of this university-based laboratory. [reprint (PDF)]
 

Page 25 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  26 27 28  >> Next  (676 Items)