About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 23 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
1. | The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal] The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)] |
1. | The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal] A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)] |
1. | Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal] Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)] |
1. | High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron S. Slivken, A. Evans, W. Zhang and M. Razeghi Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal] In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact.
[reprint (PDF)] |
1. | High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal] Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)] |
1. | Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal] The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)] |
1. | High Quantum Efficiency Solar-Blind Photodetectors R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 434-- January 25, 2004 ...[Visit Journal] We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness [reprint (PDF)] |
1. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
1. | Electrical Characterization of AlxGa1-xN for UV Photodetector Applications A. Saxler, M. Ahoujja, W.C. Mitchel, P. Kung, D. Walker, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] Ultraviolet photodetectors have many military and commercial applications. However, for many of these applications, the photodetectors must be solar blind. This means that the photodetectors must have a cutoff wavelength of less than about 270 nm. Semiconductor based devices would then need energy gaps of over 4.6 eV. In the AlxGa1-xN system, the aluminum mole fraction, x, required is over 40%. As the energy gap is increased, doping becomes much more difficult, especially p-type doping. This report is a study of the electrical properties of AlxGa1-xN to enable better control of the doping. Magnesium doped p-type AlxGa1-xN has been studied using high-temperature Hall effect measurements. The acceptor ionization energy has been found to increase substantially with the aluminum content. Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were also grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short- period superlattice structures instead of bulk-like AlGaN:Mg. Silicon doped n-type films have also been studied. [reprint (PDF)] |
1. | GaN p-i-n photodiodes with high visible-to-ultraviolet rejection ratio P. Kung, X. Zhang, D. Walker, A. Saxler, and M. Razeghi SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal] UV photodetectors are critical components in many applications, including UV astronomy, flame sensors, early missile threat warning and space-to-space communications. Because of the presence of strong IR radiation in these situations, the photodetectors have to be solar blind, i.e. able to detect UV radiation while not being sensitive to IR. AlxGa1-xN is a promising material system for such devices. AlxGa1-xN materials are wide bandgap semiconductors, with a direct bandgap whose corresponding wavelength can be continuously tuned from 200 to 365 nm. AlxGa1-xN materials are thus insensitive to visible and IR radiation whose wavelengths are higher than 365 nm. We have already reported the fabrication and characterization of AlxGa1-xN-based photoconductors with a cut-off wavelength tunable from 200 to 365 nm by adjusting the ternary alloy composition. Here, we present the growth and characterization of GaN p-i- n photodiodes which exhibit a visible-to-UV rejection ratio of 6 orders or magnitude. The thin films were grown by low pressure metalorganic chemical vapor deposition. Square mesa structures were fabricated using dry etching, followed by contact metallization. The spectral response, rejection ratio and transient response of these photodiodes is reported. [reprint (PDF)] |
1. | The Molecular Beam Epitaxial Growth of InSb on (111) GaAs E. Michel, J. Kim, J. Xu, S. Javadpour, I. Ferguson, and M. Razeghi Applied Physics Letters 69 (2)-- July 8, 1996 ...[Visit Journal] The molecular beam epitaxial growth of InSb on (111)B GaAs has been investigated. It was found that for a given Sb/In ratio, a higher growth temperature was required for the growth of InSb on (111)B GaAs compared to that on (001) GaAs. This difference has been attributed to the bonding characteristics of the (111)B and (001) surface. Once growth had been optimized, it was found that the material characteristics of (111)B InSb were almost identical to that of (001) InSb, i.e., independent of orientation. For example, the x-ray full width at half-maximum and 300 K mobility had the same absolute values for (111) InSb and (001)InSb and followed the same dependence with the sample thickness. Te was found to be a well-behaved n-type dopant for (111)B InSb. [reprint (PDF)] |
1. | Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition Omnes F., and Razeghi M. Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal] Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)] |
1. | Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation Quanyong Lu and Manijeh Razeghi Photonics, 3, 42-- July 7, 2016 ...[Visit Journal] We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications. [reprint (PDF)] |
1. | Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi Optics Letters, Vol. 37, No. 22, p. 4744-4746-- November 15, 2012 ...[Visit Journal] We report a two-color mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector’s electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature’s 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)] |
1. | III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal] III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)] |
1. | Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection B.M. Nguyen, S. Abdollahi Pour, S. Bogdanov and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760825-1-- January 22, 2010 ...[Visit Journal] The bandstructure tunability of Type-II antimonide-based superlattices has been significantly enhanced since the introduction of the M-structure superlattice, resulting in significant improvements of Type-II superlattice infrared detectors. By using M-structure, we developed the pMp design, a novel infrared photodetector architecture that inherits the advantages of traditional photoconductive and photovoltaic devices. This minority electron unipolar device consists of an M-structure barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. Applied for the very long wavelength detection, at 77K, a 14µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W at 50mV bias and the associated shot-noise detectivity of 4x1010 Jones. [reprint (PDF)] |
1. | Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs/GaSb superlattices P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, P. Manurkar, S. Bogdanov and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0W-- January 26, 2009 ...[Visit Journal] Recent advances in the design and fabrication of Type-II InAs/GaSb superlattices allowed the realization of high performance long wavelength infrared focal plane arrays. The introduction of an Mstructure barrier between the n-type contact and the pi active region reduced the tunneling component of the dark current. The M-structure design improved the noise performance and the dynamic range of FPAs at low temperatures. At 81K, the NEDT of the focal plane array was 23 mK. The noise of the camera was dominated by the noise component due to the read out integrated circuit. At 8 µm, the median quantum efficiency of the detectors was 71%, mainly limited by the reflections on the backside of the array.
[reprint (PDF)] |
1. | Investigations of ZnO thin films grown on c-Al(2)O(3) by pulsed laser deposition in N(2) + O(2) ambient D.J. Rogers, D.C. Look, F.H. Teherani, K. Minder, M. Razeghi, A. Largeteau, G. Demazeau, J. Morrod, K.A. Prior, A. Lusson, and S. Hassani Physica Status Solidi (c), Vol. 5, No. 9, p. 3084-3087-- July 1, 2008 ...[Visit Journal] ZnO films were deposited on c-Al2O3 using pulsed laser deposition both with and without N2 in the growth ambient. X-ray diffraction revealed poorer crystal quality and surface morphology for one-step growths with N2 in the ambient. A marked improvement in both the crystallographic and surface quality was obtained through use of two-step growths employing nominally undoped ZnO buffer layers prior to growth with N2 in the ambient. All films showed majority n-type conduction in Hall measurements. Post-annealing for 30 minutes at 600 ºC in O2 systematically reduced both the carrier concentration and the conductivity. A base room temperature carrier concentration of ~ 1016 cm-3 was linked to Al diffusing from the substrate. 4.2 K photoluminescence spectra exhibited blue bands associated with the growths having N2 in the ambient. Temperature dependent Hall measurements were consistent with N being incorporated in the films. Processed devices did not, however, show rectifying behavior or electroluminescence. [reprint (PDF)] |
1. | Electrically pumped photonic crystal distributed feedback quantum cascade lasers Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal] We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature.
[reprint (PDF)] |
1. | 320x256 infrared focal plane array based on type-II InAs/GaSb superlattice with a 12 μm cutoff wavelength P.Y. Delaunay, B.M. Nguyen, D. Hoffman, and M. Razeghi SPIE Porceedings, Vol. 6542, Orlando, FL 2007, p. 654204-- April 9, 2007 ...[Visit Journal] In the past few years, significant progress has been made in the structure design, growth and
processing of Type-II InAs/GaSb superlattice photodetectors. Type-II superlattice demonstrated its ability to perform imaging in the middle and long infra-red range, becoming a potential competitor for technologies such as QWIP and HgCdTe. Using an empirical tight-binding model, we developed a superlattice design that matches the lattice parameter of GaSb substrates and presents a cutoff wavelength of 12 μm. Electrical and optical measurements performed on single element detectors at 77 K showed an R0A averaging 13 Ω·cm² and a quantum efficiency as high as 54%. We demonstrated high quality material growth with x-ray FWHM below 30 arcsec and an AFM rms roughness of 1.5 Å over an area of 20x20 μm². A 320x256 array of 25x25μm² pixels, hybridized to an Indigo Read Out Integrated Circuit, performed thermal imaging up to 185 K with an operability close to 97%. The noise equivalent temperature difference at 81 K presented a peak at 270 mK, corresponding to a mean value of 340 mK. [reprint (PDF)] |
1. | Reliability of strain-balanced Ga0.331In0.669As/Al0.659In0.341As/InP quantum-cascade lasers under continuous-wave room-temperature operation A. Evans and M. Razeghi Applied Physics Letters, 88 (26)-- June 26, 2006 ...[Visit Journal] Constant current aging is reported for two randomly selected high-reflectivity-coated QCLs with an output power over 100 mW. QCLs are tested under continuous-wave operation at a heat sink temperature of 298 K(25 °C) corresponding to an internal temperature of 378 K (105 °C). Over 4000 h of continuous testing is reported without any decrease in output power. [reprint (PDF)] |
1. | InAs quantum dot infrared photodetectors on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal] We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)] |
1. | Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal] The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)] |
1. | High Performance Quantum Cascade Laser Results at the Centre for Quantum Devices M. Razeghi and S. Slivken Physica Status Solidi, 195 (1)-- January 1, 2003 ...[Visit Journal] In this paper, we review some of the history and recent results related to the development of the quantum cascade laser at the Center for Quantum Devices. The fabrication of the quantum cascade laser is described relative to growth, characterization, and processing. State-of-the-art testing results for 5-11 μm lasers will be then be explored, followed by a future outlook for the technology. [reprint (PDF)] |
1. | Long Wavelength Type-II Photodiodes Operating at Room Temperature H. Mohseni and M. Razeghi IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
Page 23 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|