Page 22 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  23 24 25 26 27  >> Next  (654 Items)

1.  Infrared Imaging Arrays Using Advanced III-V Materials and technology
M. Razeghi, J.D. Kim, C. Jelen, S. Slivken, E. Michel, H. Mohseni, J.J. Lee, J. Wojkowski, K.S. Kim, H.I. Jeon, and J. X
IEEE Proceedings, Advanced Workshop on Frontiers in Electronics (WOFE), Tenerife, Spain;-- January 6, 1997 ...[Visit Journal]
Photodetectors operating in the 3-5 and 8-12 μm atmospheric windows are of great importance for applications in infrared (IR) thermal imaging. HgCdTe has been the dominant material system for these applications. However, it suffers from instability and non-uniformity problems over large areas due to high Hg vapor pressure during the material, growth. There has been a lot of interest in the use of heteroepitaxially grown Sb-based alloys, its strained layer superlattices, and GaAs based quantum wells as alternatives to MCT. This interest has been driven by the advanced material growth and processing technology available for the III-V material system [reprint (PDF)]
 
1.  Effect of the spin split-off band on optical absorption in p-type Ga1 xInxAsyP1-y quantum-well infrared detectors
J.R. Hoff, M. Razeghi and G. Brown
Physical Review B 54 (15)-- October 15, 1996 ...[Visit Journal]
Experimental investigations of p-type Ga1-xInxAsyP1-y quantum-well intersubband photodetectors (QWIP’s) led to the discovery of unique features in photoresponse spectra of these devices. In particular, the strong 2–5 μm photoresponse of these QWIP’s was not anticipated based on previous experimental and theoretical results for p-type GaAs/AlxGa1-xAs QWIP’s. Our theoretical modeling of p-type QWIP’s based on the Ga1-xInxAsyP1-y system revealed that the intense short-wavelength photoresponse was due to a much stronger coupling to the spin-orbit split-off components in the continuum than occurs for GaAs/AlxGa1-xAs QWIP’s. Due to the strong influence of the spin split-off band, an eight-band Kane Hamiltonian was required to accurately model the measured photoresponse spectra. This theoretical model is first applied to a standard p-type GaAs/Al0.3Ga0.7As QWIP, and then to a series of GaAs/Ga0.51In0.49P, GaAs/Ga0.62In0.38As0.22P0.78, Ga0.79In0.21As0.59P0.41/Ga0.51In0.49P, and Ga0.79In0.21As0.59P0.41/Ga0.62In0.38As0.22P0.78 QWIP’s. Through this analysis, the insignificance of spin split-off absorption in GaAs/AlxGa1-xAs QWIP’s is verified, as is the dual role of light-hole extended-state and spin split-off hole-extended-state absorption on the spectral shape of Ga1-xInxAsyP1-y QWIP’s. [reprint (PDF)]
 
1.  High Performance Quantum Cascade Lasers at λ ~ 6 μm
M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David
Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal]
This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)]
 
1.  Ultraviolet Detectors for AstroPhysics Present and Future
M. Ulmer, M. Razeghi, and E. Bigan
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal]
Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)]
 
1.  Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal]
A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5  A/cm2 providing a specific detectivity of ∼2×1011  cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10  mV, the device’s dark current density was 5.5×10−8  A/cm2. At zero bias, its specific detectivity was 1×1011  cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2  V bias voltage, the device exhibited a dark current density of 1.8×10−6  A/cm2 providing a specific detectivity of 6.3×1011  cm·Hz1/2/W at 150K. [reprint (PDF)]
 
1.  Novel Method for Reclaim/Reuse of Bulk GaN Substrates using Sacrifical ZnO Release Layers
A. Rajan, S. Sundaram, Y. El Gmili, P. L. Voss, K. Pantzas, T. Moudakir, A. Ougazzaden, D. J. Rogers, F. Hosseini Teherani, V. E. Sandana, P. Bove, K. Prior, R. McClintock & M. Razeghi
Proc. SPIE 8987, Oxide-based Materials and Devices V, 898719-- April 2, 2014 ...[Visit Journal]
Free-standing (0002)-oriented GaN substrates (f = 2”) were coated with 200 nm of ZnO and used as templates for the growth of GaN thin films. SEM and AFM revealed that such GaN layers had a relatively homogenous surface morphology with an RMS roughness (5 μm x 5 μm) of less than 4nm. XRD studies revealed strained ZnO growth on the GaN substrate and the reproduction of the substrate rocking curve for the GaN overlayers after only a hundred nm of growth, thus indicating that the GaN films had superior crystallographic quality compared to those grown on sapphire or ZnO/sapphire substrates. Quarter-wafer areas of GaN were removed from the GaN substrate (by selective chemical etching away of the ZnO interlayer). The expensive GaN substrates were then reclaimed/reused (without the need for polishing) for a second cycle of ZnO and GaN growth, which gave similar XRD, SEM, CL and AFM results to the first cycle. [reprint (PDF)]
 
1.  High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Optics Express, Vol. 21, No. 1, p. 968-- January 14, 2013 ...[Visit Journal]
We demonstrate high power, room temperature, single-mode THz emissions based on intracavity difference frequency generation from mid-infrared quantum cascade lasers. Dual active regions both featuring giant nonlinear susceptibilities are used to enhance the THz power and conversion efficiency. The THz frequency is lithographically tuned by integrated dual-period distributed feedback gratings with different grating periods. Single mode emissions from 3.3 to 4.6 THz with side-mode suppression ratio and output power up to 40 dB and 65 µW are obtained, with a narrow linewidth of 5 GHz. [reprint (PDF)]
 
1.  Use of PLD-grown moth-eye ZnO nanostructures as templates for MOVPE growth of InGaN-based photovoltaics
Dave Rogers, V. E. Sandana, F. Hosseini Teherani, S. Gautier, G. Orsal, T. Moudakir, M. Molinari, M. Troyon, M. Peres, M. J. Soares, A. J. Neves, T. Monteiro, D. McGrouther, J. N. Chapman, H. J. Drouhin, M. Razeghi, and A. Ougazzaden
Renewable Energy and the Environment, OSA Technical Digest paper PWB3, Optical Society of America, (2011)-- November 2, 2011 ...[Visit Journal]
At this time, no abstract is available. Scopus has content delivery agreements in place with each publisher and currently contains 30 million records with an abstract. An abstract may not be present due to incomplete data, as supplied by the publisher, or is still in the process of being indexed. [reprint (PDF)]
 
1.  320x256 Solar-Blind Focal Plane Arrays based on AlxGa1-xN
R. McClintock, K. Mayes, A. Yasan, D. Shiell, P. Kung, and M. Razeghi
Applied Physics Letters, 86 (1)-- January 3, 2005 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind ultraviolet focal plane arrays operating at a wavelength of 280 nm. The electrical characteristics of the individual pixels are discussed, and the uniformity of the array is presented. The p–i–n photodiode array was hybridized to a 320×256 read-out integrated circuit entirely within our university research lab, and a working 320×256 camera was demonstrated. Several example solar-blind images from the camera are also provided. [reprint (PDF)]
 
1.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (13)-- April 29, 2004 ...[Visit Journal]
We report a demonstration of an infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. The middle-wavelength infrared quantum-dot infrared photodetector (QDIP) structure was grown via low-pressure metal organic chemical vapor deposition. A detectivity of 3.6×1010 cm·Hz½/W was achieved at T = 95 K and a bias of –1.4 V. The background limited temperature of our QDIP was 140 K with a 45° field of view. A 256×256 detector array was fabricated with dry etching, and hybridized to a Litton readout chip by indium bumps. Thermal imaging was achieved at temperatures up to 120 K. At T = 77 K, the noise equivalent temperature difference was measured as 0.509 K with a 300 K background and f/2.3 optics. [reprint (PDF)]
 
1.  Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates
P. Kung, D. Walker, M. Hamilton, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (4)-- January 25, 1999 ...[Visit Journal]
We report the lateral epitaxial overgrowth of GaN films on (00.1) Al2O3 and (111) Si substrates by metalorganic chemical vapor deposition. The lateral epitaxial overgrowth on Si substrates was possible after achieving quasi-monocrystalline GaN template films on (111) Si substrates. X-ray diffraction, photoluminescence, scanning electron microscopy, and atomic force microscopy were used to assess the quality of the lateral epitaxial overgrown films. Lateral growth rates more than five times as high as vertical growth rates were achieved for both lateral epitaxial overgrowths of GaN on sapphire and silicon substrates. [reprint (PDF)]
 
1.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal]
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)]
 
1.  Very High Average Power at Room Temperature from λ ~ 5.9 μm Quantum Cascade Lasers
J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi
Virtual Journal of Nanoscale Science & Technology 26-- May 26, 2003 ...[Visit Journal][reprint (PDF)]
 
1.  Persistent photoconductivity in thin undoped GaInP/GaAs quantum wells
S. Elhamri, M. Ahoujja, K. Ravindran, D.B. Mast, R.S. Newrock, W.C. Mitchel, G.J. Brown, I. Lo, M. Razeghi and X. He
Applied Physics Letters 66 (2)-- January 9, 1995 ...[Visit Journal]
Persistent photoconductivity has been observed at low temperatures in thin, unintentionally doped GaInP/GaAs/GaInP quantum wells. The two‐dimensional electron gas was studied by low field Hall and Shubnikov–de Haas effects. After illumination with red light, the electron concentration increased from low 1011 cm−2 to more than 7×1011 cm−2 resulting in an enhancement of both the carrier mobility and the quantum lifetime. The persistent photocarriers cannot be produced by DX-like defects since the shallow dopant concentration in the GaInP layers is too low to produce the observed concentration. We suggest that the persistent carriers are produced by photoionization of deep intrinsic donors in the GaInP barrier layer. We also report observation of a parallel conduction path in GaInP induced by extended illumination. [reprint (PDF)]
 
1.  2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal]
We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)]
 
1.  High performance monolithic, broadly tunable mid-infrared quantum cascade lasers
WENJIA Zhou, DONGHAI Wu, RYAN McCLINTOCK, STEVEN SLIVKEN, AND MANIJEH RAZEGH1
Optica 4(10), p. 1228-- October 10, 2017 ...[Visit Journal]
Mid-infrared lasers, emitting in the spectral region of 3-12 µm that contains strong characteristic vibrational tran­sitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applica­tions still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a mono­lithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 µm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broad­band antireflection coating. Nearly fundamental transverse­mode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1 °). The demon­strated laser source opens new opportunities for mid-infrared spectroscopy. [reprint (PDF)]
 
1.  Investigations on the substrate dependence of the properties in nominally-undoped β-Ga2O3 thin films grown by PLD
F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; C. Ton-That ; L. L. C. Lem ; E. Chikoidze ; M. Neumann-Spallart ; Y. Dumont ; T. Huynh ; M. R. Phillips ; P. Chapon ; R. McClintock ; M. Razeghi
Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051R-OLD-- March 23, 2017 ...[Visit Journal]
Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in the β-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm²/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)]
 
1.  Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers
D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015 ...[Visit Journal]
(In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. [reprint (PDF)]
 
1.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
1.  QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
Y. Ma, R. Lewicki, M. Razeghi and F. Tittel
Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal]
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)]
 
1.  Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime
K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim
Applied Physics Letters 71 (6)-- August 11, 1997 ...[Visit Journal]
Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. [reprint (PDF)]
 
1.  AlxGa1-xN p-i-n Photodiodes on Sapphire Substrates
D. Walker, P. Kung, P. Sandvik, J. Wu, M. Hamilton, I.H. Lee, J. Diaz, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
We report the fabrication and characterization of AlxGa1-xN p-i-n photodiodes (0.05 ≤ to X ≤ 0.30) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The devices present a visible-rejection of about four orders of magnitude with a cutoff wavelength that shifts from 350 nm to 291 nm. They also exhibit a constant responsivity for five decades (30 mW/m² to 1 kW/m²) of optical power density. Using capacitance measurements, the values for the acceptor concentration in the p-AlxGa1-xN region and the unintentional donor concentration in the intrinsic region are found. Photocurrent decays are exponential for high load resistances, with a time constant that corresponds to the RC product of the system. For low load resistances the transient response becomes non-exponential, with a decay time longer than the RC constant. [reprint (PDF)]
 
1.  Photovoltaic effects in GaN structures with p-n junction
X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi
Applied Physics Letters 67 (14)-- October 2, 1995 ...[Visit Journal]
Large-area GaN photovoltaic structures with p-n junctions have been fabricated using atmospheric pressure metalorganic chemical vapor deposition. The photovoltaic devices typically exhibit selective spectral characteristics with two narrow peaks of opposite polarity. This can be related to p-n junction connected back‐to‐back with a Schottky barrier. The shape of the spectral characteristic is dependent on the thickness of the n- and p-type regions. The diffusion length of holes in the n-type GaN region, estimated by theoretical modeling of the spectral response shape, was about 0.1 μm. [reprint (PDF)]
 
1.  Gas Source Molecular Beam Epitaxy Growth and Characterization of Ga0.51In0.49P/InxGa1-xAs/GaAs Modulation-doped Field-effect Transistor Structures
C. Besikci, Y. Civan, S. Ozder, O. Sen, C. Jelen, S. Slivken, and M. Razeghi
Semiconductor Science Technology 12-- January 1, 1997 ...[Visit Journal]
Lattice-matched Ga0.51In0.49P/GaAs and strained Ga0.51In0.49P/InxGa1−xAs/GaAs (0.1 ≤ x ≤ 0.25) modulation-doped field-effect transistor structures were grown by gas source molecular beam epitaxy by using Si as dopant. Detailed electrical characterization results are presented. The Ga0.5In0.49P/In0.25Ga0.75As/GaAs sample yielded dark two-dimensional electron gas densities of 3.75 x 1012 cm-2 (300 K) and 2.3 x 1012 cm-2 (77 K) which are comparable to the highest sheet electron densities reported in AlGaAs/InGaAs/GaAs and InAlAs/InGaAs/InP modulation-doped heterostructures. Persistent photoconductivity was observed in the strained samples only. A 0.797 eV deep level has been detected in the undoped GaInP layers of the structures. Another level, with DLTS peak height dependent on the filling pulse width, has been detected at the interface of the strained samples. Based on the DLTS and Hall effect measurement results, this level, which seems to be the origin of persistent photoconductivity, can be attributed to the strain relaxation related defects. [reprint (PDF)]
 
1.  4.5 mW Operation of AlGaN-based 267 nm Deep-Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S.R. Darvish, P. Kung and M. Razeghi
Applied Physics Letters, 83 (23)-- December 8, 2003 ...[Visit Journal]
We demonstrate 4.5 mW output power from AlGaN-based single quantum well ultraviolet light-emitting diodes at a very short wavelength of 267 nm in pulsed operation mode. The output power in continuous-wave mode reaches a value of 165 µW at an injected current of 435 mA. The measurements were done on arrays of four devices flip chip bonded to AlN submounts for thermal management. [reprint (PDF)]
 

Page 22 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  23 24 25 26 27  >> Next  (654 Items)