Page 21 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  22 23 24 25 26 27 28  >> Next  (676 Items)

1.  High Optical Response in Forward Biased (In,Ga)N-GaN Multiquantum-Well Diodes Under Barrier Illumination
J.L. Pau, R. McClintock, C. Bayram, K. Minder, D. Silversmith and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 4, p. 346-353.-- April 1, 2008 ...[Visit Journal]
The authors report on the current–voltage (I–V) characteristic under forward biases obtained in low leakage, small size p-(In,Ga)N–GaN-n multiquantum well diodes. Under barrier illumination, the devices present a high optical response with capabilities to detect optical powers in the pW range without further amplification. This response is attributed to the screening of the internal electric fields. Recombination times of a few seconds are found to be associated to this mechanism. Moreover, a step-like feature is found in the I– V characteristic before the diode turn-on voltage. Our model proposes tunneling current through the multi-quantum-well structure as responsible of this feature. Fast modulation of the tunneling effect under barrier illumination is used to evaluate the detection of low photon fluxes. [reprint (PDF)]
 
1.  Use of ZnO thin films as sacrifical templates for metal organic vapor phase epitaxy and chemical lift-off of GaN
D.J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M.R. Correira, M. Peres, A. Neves, D. McGrouther, J.N. Chapman, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071120-1-- August 13, 2007 ...[Visit Journal]
Continued development of GaN-based light emitting diodes is being hampered by constraints imposed by current non-native substrates. ZnO is a promising alternative substrate but it decomposes under the conditions used in conventional GaN metal organic vapor phase epitaxy (MOVPE). In this work, GaN was grown on ZnO/c-Al2O3 using low temperature/pressure MOVPE with N2 as a carrier and dimethylhydrazine as a N source. Characterization confirmed the epitaxial growth of GaN. The GaN was lifted-off the c-Al2O3 by chemically etching away the ZnO underlayer. This approach opens up the way for bonding of the GaN onto a support of choice. [reprint (PDF)]
 
1.  Etching of ZnO Towards the Development of ZnO Homostructure LEDs
K. Minder, F.H. Teherani, D. Rogers, C. Bayram, R. McClintock, P. Kung, and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Zinc Oxide Materials and Devices II, Vol. 6474, p. 64740Q-1-6-- January 29, 2007 ...[Visit Journal]
Although ZnO has recently gained much interest as an alternative to the III-Nitride material system, the development of ZnO based optoelectonic devices is still in its infancy. Significant material breakthroughs in p-type doping of ZnO thin films and improvements in crystal growth techniques have recently been achieved, making the development of optoelectonic devices possible. First, a survey of current ZnO processing methods is presented, followed by the results of our processing research. [reprint (PDF)]
 
1.  Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. Kumar N. Patel
Proceedings of the National Academy of Sciences 103 (13)-- March 26, 2006 ...[Visit Journal]
We report substantially improved performance of high-power quantum cascade lasers (QCLs) by using epitaxial-side-down mounting that provides superior heat dissipation properties. We used aluminum nitride as the heatsink material and gold–tin eutectic solder. We have obtained continuous wave power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epitaxial-side-down mounting combined with a highly manufacturable and scalable assembly process should permit incorporation of mid-IR QCLs in reliable instrumentation.
 
1.  Infrared detection from GaInAs/InP nanopillar arrays
A. Gin, B. Movaghar, M. Razeghi and G.J. Brown
Nanotechnology 16-- July 1, 2005 ...[Visit Journal]
We report on the photoresponse from large arrays of 40 nm radius nanopillars with sensitivity in the long-wavelength infrared regime. Using photoluminescence techniques, a peak wavelength blue shift of approximately 5 meV was observed at 30 K from GaInAs/InP nanopillar structures, indicating carrier confinement effects. Responsivity measurements at 30 K indicated peak wavelength response at about 8 µm with responsivity of 420 mA/W at −2 V bias. We have also measured the noise and estimated the peak detectivity to be 3×108 cm·Hz½·W−1 at 1 V reverse bias and 30 K. A maximum internal quantum efficiency of 4.5% was derived from experiment. Both the photo and the dark transport have been successfully modeled as processes that involve direct and indirect field-assisted tunneling as well as thermionic emission. The best agreement with experiment was obtained when allowances were made for the non-uniformity of barrier widths and electric field heating of carriers above the lattice temperature. [reprint (PDF)]
 
1.  Photoluminescence Study of AlGaN-based 280 nm Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi
Applied Physics Letters, 83 (20)-- November 17, 2003 ...[Visit Journal]
We investigated optical properties of single quantum well AlGaN-based UV 280 nm light-emitting diodes using temperature-dependent photoluminescence (PL) measurement. We found an "S-shaped" temperature dependence of the peak energy. From the Arrhenius plot of integrated PL intensity, we speculate that dislocations as well as thermal emission of carriers out of the quantum well are responsible for the PL quenching behavior. Also a second nonradiative channel with much lower activation energy was found, the origin of which we believe to be quenching of the bound excitons [reprint (PDF)]
 
1.  Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, H. Zhang, P. Kung, M. Razeghi, S.K. Lee and J.Y. Han
Applied Physics Letters, 81 (12)-- September 16, 2002 ...[Visit Journal]
Based on AlInGaN/AlInGaN multiquantum wells, we compare properties of ultraviolet light-emitting diodes (LED) with peak emission at 340 nm grown on free-standing hydride vapor phase epitaxially grown GaN substrate and on sapphire. For the LED grown on GaN substrate, a differential resistance as low as 13 Ω and an output power of more than one order of magnitude higher than that of the same structure grown on sapphire are achieved. Due to higher thermal conductivity of GaN, output power of the LEDs saturates at higher injection currents compared to the devices grown on sapphire. [reprint (PDF)]
 
1.  High Performance Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
M. Razeghi, S. Slivken, A. Tahraoui and A. Matlis
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
Recent improvements in quantum cascade laser technology have led to a number of very impressive results. This paper is a brief summary of the technological development and state-of- the-art performance of quantum cascade lasers produced at the Center for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Room temperature QCL operation has been reported for lasers emitting between 5 - 11 μm, with 9 - 11 μm lasers operating up to 425 K. We also demonstrate record room temperature peak output powers at 9 and 11 μm(2.5 W and 1 W respectively) as well as record low 80 K threshold current densities (250 A/cm²) for some laser designs. Finally, some of the current limitations to laser efficiency are mentioned, as well as a means to combat them. [reprint (PDF)]
 
1.  Internal Stress Around Micropipes in 6H-SiC Substrates
H. Ohsato, T. Kato, T. Okuda and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
6H-SiC single crystals are expected to be suitable substrates for thin film growth of the wide bandgap semiconductor (GaN, because it has a small lattice mismatch with GaN. Moreover, SiC single crystals are also expected for high-power and high- temperature electric applications because of its wide band gap, high breakdown voltage, high thermal conductivity and high temperature stability. Single crystals with large size used for electronic devices can be grown on seed crystals only by the modified Lely method based on sublimation deposition. But, single crystals have serious defects so called micropipes. These micropipes penetrate almost along the [001] direction. The internal strain around micropipes was investigated using the polarizing optical microscope for the purpose of clarifying the formation mechanisms and decreasing the amount of micropipes. A special interference figure was found around a micropipe under the crossed polars on the polarizing microscope. In this work, the special interference figure around micropipes due to internal stress was explained, and the magnitude and distribution of the stress was measured by means of photoelasticity and the mapping of Raman spectra. [reprint (PDF)]
 
1.  Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells
W. C. Mitchel, G.J. Brown, I. Lo, S. Elhamri, M. Aboujja, K. Ravindran, R.S. Newrock, M. Razeghi, and X. He
Applied Physics Letters 65 (12)-- September 19, 1994 ...[Visit Journal]
Electronic transport properties of very thin undoped GaInP/GaAs quantum wells have been measured by temperature dependent low field Hall effect and by Shubnikov–de Haas effect. Strong Shubnikov–de Haas oscillations were observed after increasing the electron concentration via the persistent photocurrent effect. Low temperature mobilities of up to 70 ,000 cm²/V· s at carrier concentrations of 6.5×1011 cm−2 were observed in a 20 Å quantum well. The results are compared with the theory of interface roughness scattering which indicates extremely smooth interfaces; however, discrepancies between experiment and theory are observed. [reprint (PDF)]
 
1.  Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Manijeh Razeghi, Arash Dehzangi, Jiakai Li
Results in Optics Volume 2, January 2021, 100054 https://doi.org/10.1016/j.rio.2021.100054 ...[Visit Journal]
Type-II InAs/GaSb superlattices (T2SLs) has drawn a lot of attention since it was introduced in 1970, especially for infrared detection as a system of multi-interacting quantum wells. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process, which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). As a pioneer in the field, center for quantum devices (CQD) has been involved in growth, design, characterization, and introduction of T2SL material system for infrared photodetection. In this review paper, we will present the latest development of bias-selectable multi-band infrared photodetectors at the CQD, based on InAs/GaSb/AlSb and InAs/InAs1-xSbx type-II superlattice. [reprint (PDF)]
 
1.  Quantum cascade lasers: from tool to product
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Optics Express Vol. 23, Issue 7, pp. 8462-8475-- March 25, 2015 ...[Visit Journal]
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. [reprint (PDF)]
 
1.  InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity
H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal]
Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)]
 
1.  Tunability of intersubband absorption from 4.5 to 5.3 µm in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition
N. Péré-Laperne, C. Bayram, L. Nguyen-Thê, R. McClintock, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 13, p. 131109-- September 28, 2009 ...[Visit Journal]
Intersubband (ISB) absorption at wavelengths as long as 5.3 µm is realized in GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition. By employing low aluminum content Al0.2Ga0.8N barriers and varying the well width from 2.6 to 5.1 nm, ISB absorption has been tuned from 4.5 to 5.3 µm. Theoretical ISB absorption and interband emission models are developed and compared to the experimental results. The effects of band offsets and the piezoelectric fields on these superlattices are investigated. [reprint (PDF)]
 
1.  Use of PLD-grown moth-eye ZnO nanostructures as templates for MOVPE growth of InGaN-based photovoltaics
Dave Rogers, V. E. Sandana, F. Hosseini Teherani, S. Gautier, G. Orsal, T. Moudakir, M. Molinari, M. Troyon, M. Peres, M. J. Soares, A. J. Neves, T. Monteiro, D. McGrouther, J. N. Chapman, H. J. Drouhin, M. Razeghi, and A. Ougazzaden
Renewable Energy and the Environment, OSA Technical Digest paper PWB3, Optical Society of America, (2011)-- November 2, 2011 ...[Visit Journal]
At this time, no abstract is available. Scopus has content delivery agreements in place with each publisher and currently contains 30 million records with an abstract. An abstract may not be present due to incomplete data, as supplied by the publisher, or is still in the process of being indexed. [reprint (PDF)]
 
1.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Back-illuminated separate absorption and multiplication GaN avalanche photodiodes
J.L. Pau, C. Bayram, R. McClintock, M. Razeghi and D. Silversmith
Applied Physics Letters, Vol. 92, No. 10, p. 101120-1-- March 10, 2008 ...[Visit Journal]
The performance of back-illuminated avalanche photodiodes with separate absorption and multiplication regions is presented. Devices with an active area of 225 µm2 show a maximum multiplication gain of 41,200. The calculation of the noise equivalent power yields a minimum value of 3.3×10−14 W·Hz−1/2 at a gain of 3000, increasing to 2.0×10−13 W·Hz−1/2 at a gain of 41,200. The broadening of the response edge has been analyzed as a function of bias. [reprint (PDF)]
 
1.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 
1.  Focal plane arrays based on quantum dot infrared photodetectors
Manijeh Razeghi; Wei Zhang; Ho-Chul Lim; Stanley Tsao; John Szafraniec; Maho Taguchi; Bijan Movaghar
Proc. SPIE 5838, Nanotechnology II, 125 (June 28, 2005);-- June 28, 2005 ...[Visit Journal]
Here we report the first demonstrations of infrared focal plane array (FPA) based on GaAs and InP based quantum dot infrared photodetectors (QDIPs). QDIPs are extension of quantum well infrared photodetectors (QWIPs) and are predicted to outperform QWIPs due to their potential advantages including normally incident absorption, higher responsivity and high temperature operation. Two material systems have been studied: InGaAs/InGaP QDIPs on GaAs substrates and InAs QDIP on InP substrates. An InGaAs/InGaP QDIP has been grown on GaAs substrate by LP-MOCVD. Photoresponse was observed at temperatures up to 200 K with a peak wavelength of 4.7 μm and cutoff wavelength of 5.2 μm. A detectivity of 1.2x1011 cm·Hz1/2/W was obtained at T=77 K and bias of -0.9 V, which is the highest for QDIPs grown by MOCVD. An InAs QDIP structure has also been grown on InP substrate by LP-MOCVD. Photoresponse of normal incidence was observed at temperature up to 160K with a peak wavelength of 6.4 μm and cutoff wavelength of 6.6 μm. A detectivity of 1.0x1010 cm·Hz1/2/W was obtained at 77K at biases of -1.1 V, which is the first and highest detectivity reported for QDIP on InP substrate. 256×256 detector arrays were fabricated first time in the world for both the GaAs and InP based QDIPs. Dry etching and indium bump bonding were used to hybridize the arrays to a Litton readout integrated circuit. For the InGaAs/InGaP QDIP FPA, thermal imaging was achieved at temperatures up to 120 K. At T=77K, the noise equivalent temperature difference (NEDT) was measured as 0.509K with a 300K background and f/2.3 optics. For the InP based QDIPs, thermal imaging was achieved at 77 K. [reprint (PDF)]
 
1.  Long-Wavelength Infrared Photodetectors Based on InSbBi Grown on GaAs Substrates
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 71 (16)-- October 20, 1997 ...[Visit Journal]
We demonstrate the operation of InSbBi infrared photoconductive detectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The fabricated photodetector showed a cutoff wavelength of 7.7 μm at 77 K. The responsivity of the InSbBi photodetector at 7 μm was about 3.2 V/W at 77 K. The corresponding Johnson-noise limited detectivity was 4.7×108  cm· Hz½/W. The carrier lifetime was estimated to be about 86 ns from the voltage-dependent responsivity measurements. [reprint (PDF)]
 
1.  Widely tunable room temperature semiconductor terahertz source
Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 105, 201102-- November 17, 2014 ...[Visit Journal]
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing. [reprint (PDF)]
 
1.  Recent progress of widely tunable, CW THz sources based QCLs at room temperature
Manijeh Razeghi
Terahertz Science and Technology, Vol.10, No.4, pp. 87-151-- December 7, 2017 ...[Visit Journal]
The THz spectral region is of significant interest to the scientific community, but is one of the hardest regions to access with conventional technology. A wide range of compelling new applications are initiating a new revolution in THz technology, especially with regard to the development of compact and versatile devices for THz emission and detection. In this article, recent advances with regard to III-V semiconductor optoelectronics are explored with emphasis on how these advances will lead to the next generation of THz component technology [reprint (PDF)]
 
1.  Neutron Activation Analysis of an Iranian Cigarette and its Smoke
Z. Abedinzadeh, M. Razeghi and B. Parsa
Z. Abedinzadeh, M. Razeghi and B. Parsa, Journal of Radioanalytical Chemistry, VoL 35 [1977) 373-376-- September 1, 1977 ...[Visit Journal]
Non-destructive neutron activation analysis, employing a high-resolution Ge(Li) detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. [reprint (PDF)]
 
1.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 

Page 21 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  22 23 24 25 26 27 28  >> Next  (676 Items)