About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 21 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
1. | Microstructural compositional, and optical characterization of GaN grown by metal organic vapor phase epitaxy on ZnO epilayers D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, F. Jomard, M. Molinari, M. Troyon, D. McGrouther, J.N. Chapman, M. Razeghi and A. Ougazzaden Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1655-1657-- May 29, 2009 ...[Visit Journal] This article presents the results of microstructural, compositional, and optical characterization of GaN films grown on ZnO buffered c-sapphire substrates. Transmission electron microscopy showed epitaxy between the GaN and the ZnO, no degradation of the ZnO buffer layer, and no evidence of any interfacial compounds. Secondary ion mass spectroscopy revealed negligible Zn signal in the GaN layer away from the GaN/ZnO interface. After chemical removal of the ZnO, room temperature (RT) cathodoluminescence spectra had a single main peak centered at ~ 368 nm (~3.37 eV), which was indexed as near-band-edge (NBE) emission from the GaN layer. There was no evidence of the ZnO NBE peak, centered at ~379 nm (~3.28 eV), which had been observed in RT photoluminescence spectra prior to removal of the ZnO. [reprint (PDF)] |
1. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal] This paper presents an overview of semiconductor ultraviolet (UV) detectors that are currently available and associated technologies that are undergoing further development. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further consideration are restricted to modern semiconductor UV detectors, so the current state-of-the-art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main effort are currently directed to a new generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
1. | Characterization of ZnO thin films grown on c-sapphire by pulsed laser deposition as templates for regrowth of zno by metal organic chemical vapor deposition D. J. Rogers ; F. Hosseini Teherani ; C. Sartel ; V. Sallet ; F. Jomard ; P. Galtier ; M. Razeghi Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 72170F (February 17, 2009)-- February 17, 2009 ...[Visit Journal] The use of ZnO template layers grown Pulsed Laser Deposition (PLD) has been seen to produce dramatic improvements in the surface morphology, crystallographic quality and optical properties of ZnO layers grown on c-sapphire substrates by Metal Organic Chemical Vapor Deposition. This paper provides complementary details on the PLD-grown ZnO template properties. [reprint (PDF)] |
1. | High efficiency quantum cascade laser frequency comb Quanyong Lu, Donghai Wu, Steven Slivken & Manijeh Razeghi Scientific Reports 7, Article number: 43806-- March 6, 2017 ...[Visit Journal] An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. [reprint (PDF)] |
1. | High power, electrically tunable quantum cascade lasers Steven Slivken; Manijeh Razeghi Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics-- February 13, 2016 ...[Visit Journal] Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser. [reprint (PDF)] |
1. | A Review of III-Nitride Research at the Center for Quantum Devices M. Razeghi and R. McClintock Journal of Crystal Growth, Vol. 311, No. 10-- May 1, 2009 ...[Visit Journal] In this paper, we review the history of the Center for Quantum Devices’ (CQD) III-nitride research
covering the past 15 years. We review early work developing III-nitride material growth. We then
present a review of laser and light-emitting diode (LED) results covering everything from blue lasers to deep UV LEDs emitting at 250 nm. This is followed by a discussion of our UV photodetector research from early photoconductors all the way to current state of the art Geiger-mode UV single photon detectors. [reprint (PDF)] |
1. | Passivation of Type-II InAs/GaSb Superlattice Photodiodes A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004 ...[Visit Journal] Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. [reprint (PDF)] |
1. | Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells W. C. Mitchel, G.J. Brown, I. Lo, S. Elhamri, M. Aboujja, K. Ravindran, R.S. Newrock, M. Razeghi, and X. He Applied Physics Letters 65 (12)-- September 19, 1994 ...[Visit Journal] Electronic transport properties of very thin undoped GaInP/GaAs quantum wells have been measured by temperature dependent low field Hall effect and by Shubnikov–de Haas effect. Strong Shubnikov–de Haas oscillations were observed after increasing the electron concentration via the persistent photocurrent effect. Low temperature mobilities of up to 70 ,000 cm²/V· s at carrier concentrations of 6.5×1011 cm−2 were observed in a 20 Å quantum well. The results are compared with the theory of interface roughness scattering which indicates extremely smooth interfaces; however, discrepancies between experiment and theory are observed. [reprint (PDF)] |
1. | A lifetime of contributions to the world of semiconductors using the Czochralski invention M. Razeghi Vacuum Vol. 9934, 993406-1-- February 8, 2017 ...[Visit Journal] Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)] |
1. | High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal] Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)] |
1. | Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi Applied Physics Letters 69 (3)-- August 15, 1996 ...[Visit Journal] Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. [reprint (PDF)] |
1. | ZnO Thin Film Templates for GaN-based Devices D.J. Rogers, F. Hosseini Teherani, A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi and G. Garry SPIE Conference, Jose, CA, Vol. 5732, pp. 412-- January 22, 2005 ...[Visit Journal] GaN-based optoelectronic devices are plagued by a tendency to non-radiative transitions linked to defects in the active layers. ZnO is promising as a substrate material for GaN because it has the same wurtzite structure and a relatively small lattice mismatch (~1.8%). In this paper, we discuss use of ZnO thin films as templates for GaN based LED. [reprint (PDF)] |
1. | III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal] III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)] |
1. | Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal] An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)] |
1. | Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal] InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)] |
1. | Passivation of type-II InAs/GaSb double heterostructure P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi Applied Physics Letters, Vol. 91, No. 9, p. 091112-1-- August 27, 2007 ...[Visit Journal] Focal plane array fabrication requires a well passivated material that is resistant to aggressive processes. The authors report on the ability of type-II InAs/GaSb superlattice heterodiodes to be more resilient than homojunctions diodes in improving sidewall resistivity through the use of various passivation techniques. The heterostructure consisting of two wide band gap (5 µm) superlattice contacts and a low band gap active region (11 µm) exhibits an R0A averaging of 13·Ω cm2. The devices passivated with SiO2, Na2S and SiO2 or polyimide did not degrade compared to the unpassivated sample and the resistivity of the sidewalls increased to 47 kΩ·cm.
[reprint (PDF)] |
1. | High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal] Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)] |
1. | Reliability of Aluminum-Free 808 nm High-Power Laser Diodes with Uncoated Mirrors I. Eliashevich, J. Diaz, H. Yi, L. Wang, and M. Razeghi Applied Physics Letters 66 (23)-- June 5, 1995 ...[Visit Journal] The reliability of uncoated InGaAsP/GaAs high‐power diode lasers emitting at 808 nm wavelength has been studied. 47 W of quasicontinuous wave output power (pulse width 200 μs, frequency 20 Hz) have been obtained from a 1 cm wide laser bar. A single‐stripe diode without mirror coating has been life tested at 40 °C for emitting power of 800 mW continuous wave (cw) and showed no noticeable degradation and no change of the lasing wavelength after 6000 h of operation. [reprint (PDF)] |
1. | Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 435, Pages 105-109-- November 7, 2015 ...[Visit Journal] p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry
standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. [reprint (PDF)] |
1. | Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films Yaobin Xu, Ji-hyeon Park, Zhenpeng Yao, Christopher Wolverton, Manijeh Razeghi, Jinsong Wu, and Vinayak P. Dravid ACS Appl. Mater. Interfaces-- January 10, 2019 ...[Visit Journal] It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the
Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different
orientations, with an aberration-corrected scanning transmission electron microscope (STEM).
Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in
direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4~5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high resolution electron microscopy (HREM) observation,
complemented by the density functional theory (DFT) calculations. This study provides insights
from the atomic scale and their implications for the design of functional thin film materials using epitaxial engineering. |
1. | Solar-blind AlGaN photodiodes with very low cutoff wavelength D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi Applied Physics Letters 76 (4)-- January 24, 2000 ...[Visit Journal] We report the fabrication and characterization of AlxGa1–xN photodiodes (x~0.70) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The peak responsivity for –5 V bias is 0.11 A/W at 232 nm, corresponding to an internal quantum efficiency greater than 90%. The device response drops four orders of magnitude by 275 nm and remains at low response for the entire near-ultraviolet and visible spectrum. Improvements were made to the device design including a semitransparent Ni/Au contact layer and a GaN:Mg cap layer, which dramatically increased device response by enhancing the carrier collection efficiency. [reprint (PDF)] |
1. | Gas-Source Molecular Beam Epitaxy Growth of 8.5 μm Quantum Cascade Laser S. Slivken, C. Jelen, A. Rybaltowski, J. Diaz and M. Razeghi Applied Physics Letters 71 (18)-- November 1, 1997 ...[Visit Journal] We demonstrate preliminary results for an 8.5 μm laser emission from quantum cascade lasers grown in a single step by gas-source molecular beam epitaxy. 70 mW peak power per two facets is recorded for all devices tested at 79 K with 1 μs pulses at 200 Hz. For a 3 mm cavity length, lasing persists up to 270 K with a T0 of 180 K. [reprint (PDF)] |
1. | Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D.K. Gaskill Journal of Applied Physics 76 (1)-- July 1, 1994 ...[Visit Journal] Single crystals of GaN were grown on (0001), (0112) Al2O3 and (0001)Si 6H‐SiC substrates using an atmospheric pressure metalorganic chemical‐vapor‐deposition reactor. The relationship has been studied between the thermal stability of the GaN films and the substrate’s surface polarity. It appeared that the N‐terminated (0001) GaN surface grown on (0001)Si 6H‐SiC has the most stable surface, followed by the nonpolar (1120) GaN surface grown on (0112) Al2O3, while the Ga‐terminated (0001) GaN surface grown on (0001) Al2O3 has the least stable surface. This is explained with the difference in the atomic configuration of each of these surfaces which induces a difference in their thermal decomposition. [reprint (PDF)] |
1. | Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. Kumar N. Patel Proceedings of the National Academy of Sciences 103 (13)-- March 26, 2006 ...[Visit Journal] We report substantially improved performance of high-power quantum cascade lasers (QCLs) by using epitaxial-side-down mounting that provides superior heat dissipation properties. We used aluminum nitride as the heatsink material and gold–tin eutectic solder. We have obtained continuous wave power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epitaxial-side-down mounting combined with a highly manufacturable and scalable assembly process should permit incorporation of mid-IR QCLs in reliable instrumentation. |
1. | High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi Appl. Phys. Lett. 105, 071106 (2014)-- August 20, 2014 ...[Visit Journal] A technique based on composite quantum wells for design and growth of strain balanced Al0.63In0.37As/Ga0.35In0.65As/Ga0.47In0.53As quantum cascade lasers (QCLs) by molecular beam epitaxy (MBE), emitting in 5.2–11 μm wavelength range, is reported. The strained Al0.63In0.37As provides good electron confinement at all wavelengths, and strain balancing can be achieved through composite wells of Ga0.35In0.65As/Ga0.47In0.53As for different wavelength. The use of these fixed composition materials can avoid the need for frequent calibration of a MBE reactor to grow active regions with different strain levels for different wavelengths. Experimental results for QCLs emitting at 5.2, 6.7, 8.2, 9.1, and 11 μm exhibit good wall plug efficiencies and power across the whole wavelength range. It is shown that the emission wavelength can be predictably changed using the same design template. These lasers are also compatible with a heterogeneous broadband active region, consisting of multiple QCL cores, which can be produced in a single growth run. [reprint (PDF)] |
Page 21 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
|