Page 20 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21 22 23 24 25  >> Next  (606 Items)

1.  Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range
E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi
SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)]
 
1.  Use of ZnO thin films as sacrifical templates for metal organic vapor phase epitaxy and chemical lift-off of GaN
D.J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M.R. Correira, M. Peres, A. Neves, D. McGrouther, J.N. Chapman, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071120-1-- August 13, 2007 ...[Visit Journal]
Continued development of GaN-based light emitting diodes is being hampered by constraints imposed by current non-native substrates. ZnO is a promising alternative substrate but it decomposes under the conditions used in conventional GaN metal organic vapor phase epitaxy (MOVPE). In this work, GaN was grown on ZnO/c-Al2O3 using low temperature/pressure MOVPE with N2 as a carrier and dimethylhydrazine as a N source. Characterization confirmed the epitaxial growth of GaN. The GaN was lifted-off the c-Al2O3 by chemically etching away the ZnO underlayer. This approach opens up the way for bonding of the GaN onto a support of choice. [reprint (PDF)]
 
1.  Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes
A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal]
The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)]
 
1.  Nickel oxide growth on Si (111), c-Al2O3 and FTO/glass by pulsed laser deposition
V. E. Sandana ; D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; R. McClintock ; M. Razeghi
03/07/2014-- March 7, 2014 ...[Visit Journal]
NiO was grown on Si (111), c-Al2O3 and FTO/glass substrates by pulsed laser deposition (PLD). X-Ray Diffraction (XRD) and scanning electron microscope (SEM) studies revealed that layers grown on c-Al2O3 were fcc NiO with a dense morphology of cubic grains that were strongly (111) oriented along the growth direction. The relatively low ω rocking curve linewidth, of 0.12°suggests that there may have been epitaxial growth on the c-Al2O3 substrate. XRD and SEM indicated that films grown on Si (111) were also fcc NiO, with cubic grains, but that the grain orientation was random. This is consistent with the presence of an amorphous SiO2 layer at the surface of the Si substrate, which precluded epitaxial growth. NiO grown at lower temperature (200°C) on temperature-sensitive FTO/glass substrates showed no evidence of crystallinity in XRD and SEM studies. After flash annealing in air, however, peaks characteristic of randomly oriented fcc NiO appeared in the XRD scans and the surface morphology became more granular in appearance. Such layers appear promising for the development of future dye-sensitised solar cell devices based on NiO grown by PLD. [reprint (PDF)]
 
1.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)]
 
1.  High Performance Quantum Cascade Lasers at λ ~ 6 μm
M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David
Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal]
This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)]
 
1.  Quantum cascade laser: A tool for trace chemical detection
Allan J. Evans; Manijeh Razeghi
American Filtration and Separations Society - 20th Annual Conference and Exposition of the American Filtration and Separations Society 2:914-923 (2007)-- March 26, 2007
Laser-based trace chemical sensors are highly desired to enhance pollution filtering, health and safety monitoring, and filter efficiency monitoring for industrial processes. Limitations of current monitoring and sensing techniques are discussed and the benefits of mid-infrared spectroscopy using novel Quantum Cascade semiconductor Lasers (QCLs) are presented. These new techniques promise inexpensive, miniaturized sensors, capable of remote detection of trace chemicals in liquids, solids, and gasses with levels less than 1 part-per-billion. Applications of these techniques are discussed and the most recent developments of application-ready high power (> 100 mW), continuous-wave, mid-infrared QCLs operating above room temperature with lifetimes exceeding 12,000 hours are presented.
 
1.  Quantum-dot infrared photodetectors and focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy
SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060I-1-- April 21, 2006 ...[Visit Journal]
We report our recent results about mid-wavelength infrared quantum-dot infrared photodetectors (QDIPs) grown by low-pressure metalorganic chemical vapor deposition. A very high responsivity and a very low dark current were obtained. A high peak detectivity of the order of 3×1012 Jones was achieved at 77 K. The temperature dependent device performance was also investigated. The improved temperature insensitivity compared to QWIPs was attributed to the properties of quantum dots. The device showed a background limited performance temperature of 220 K with a 45° field of view and 300K background. [reprint (PDF)]
 
1.  High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 μm
D. Wu, B. Lane, H. Mohseni, J. Diaz and M. Razeghi
Applied Physics Letters 74 (9)-- March 1, 1999 ...[Visit Journal]
Midinfrared lasers with an asymmetrical InPAsSb/InAsSb/AlAsSb double heterostructure are reported. Using the asymmetrical double heterostructure, p- and n-cladding layers are separately optimized; high energy-gap AlAsSb (Eg ≈ 1.5 eV) for the p-type cladding layer to reduce the leakage current, and thus to increase To, and low energy-gap InPAsSb (Eg ≈ 0.5 eV) for the n-cladding layer to have low turn-on voltage. 100-μm-width broad-area lasers with 1000 μm cavity length exhibited peak output powers of 1.88 W in pulse and 350 mW in continuous wave modes per two facets at T=80 K with To of 54 K and turn-on voltage of 0.36 V. Maximum peak output powers up to 6.7 W were obtained from a laser bar of total aperture of 400 μm width and cavity length of 1000 μm, with a differential efficiency of 34% and far-field beam divergence narrower than 40° at 80 K. [reprint (PDF)]
 
1.  Solar-Blind Deep UV Avalanche Photodetectors Using Reduced Area Epitaxy
Lakshay Gautam , Junhee Lee, Michael Richards, and Manijeh Razeghi ,
Lakshay Gautam, Manijeh Razeghi, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 6, 10.1109/JQE.2023.3325254 ...[Visit Journal]
We report high gain avalanche photodetectors operating in the deep UV wavelength regime. The high gain was leveraged through reduced area epitaxy by patterning AlN on Sapphire substrate. This helps in a substantial reduction of crack formation due to overgrowth on individually isolated AlN mesas. Reproducible gain on the order of 105 was reported for multiple diodes in different areas of 320 × 256 focal plane array.
 
1.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 
1.  Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window
H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel
IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  On the interface properties of ZnO/Si electroluminescent diodes
J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010 ...[Visit Journal]
ZnO layers grown on n–Si(100), n+–Si(100), and n–Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. [reprint (PDF)]
 
1.  High efficiency quantum cascade laser frequency comb
Quanyong Lu, Donghai Wu, Steven Slivken & Manijeh Razeghi
Scientific Reports 7, Article number: 43806-- March 6, 2017 ...[Visit Journal]
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. [reprint (PDF)]
 
1.  Demonstration of InAsSb/AlInSb Double Heterostructure Detectors for Room Temperature Operation in the 5–8 μm Wavelength Range
J.S. Wojkowski, H. Mohseni, J.D. Kim, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
We report the first demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation. The structures were grown in a solid source molecular beam epitaxy reactor on semi-insulating GaAs substrate. The material was processed to 400x400 micrometer mesas using standard photolithography, etching, and metallization techniques. No optical immersion or surface passivation was used. The photovoltaic detectors showed a cutoff wavelength at 8 micrometer at 300 K. The devices showed a high quantum efficiency of 40% at 7 μm at room temperature. A responsivity of 300 mA/W was measured at 7 μm under a reverse bias of 0.25 V at 300 K resulting in a Johnson noise limited detectivity of 2x108 cm·Hz½/W. [reprint (PDF)]
 
1.  Characterization of ZnO thin films grown on c-sapphire by pulsed laser deposition as templates for regrowth of zno by metal organic chemical vapor deposition
D. J. Rogers ; F. Hosseini Teherani ; C. Sartel ; V. Sallet ; F. Jomard ; P. Galtier ; M. Razeghi
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 72170F (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
The use of ZnO template layers grown Pulsed Laser Deposition (PLD) has been seen to produce dramatic improvements in the surface morphology, crystallographic quality and optical properties of ZnO layers grown on c-sapphire substrates by Metal Organic Chemical Vapor Deposition. This paper provides complementary details on the PLD-grown ZnO template properties. [reprint (PDF)]
 
1.  Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy
Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, and M. Razeghi
Applied Physics Letters 112, 141104-- April 3, 2018 ...[Visit Journal]
Quantum cascade lasers (QCLs) are versatile light sources with tailorable emitting wavelengths covering the mid-infrared and terahertz spectral ranges. When the dispersion is minimized, frequency combs can be directly emitted from quantum cascade lasers via four-wave mixing. To date, most of the mid-infrared quantum cascade laser combs are operational in a narrow wavelength range wherein the QCL dispersion is minimal. In this work, we address the issue of very high dispersion for shortwave QCLs and demonstrate 1-W dispersion compensated shortwave QCL frequency combs at λ~5.0 μm, spanning a spectral range of 100 cm−1. The multi-heterodyne spectrum exhibits 95 equally spaced frequency comb lines, indicating that the shortwave QCL combs are ideal candidates for high-speed high-resolution spectroscopy [reprint (PDF)]
 
1.  Quantum Sensing Using Type-II InAs/GaSb Superlattice for Infrared Detection
M. Razeghi, A. Gin, Y. Wei, J. Bae, and J. Nah
Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal]
Large, regular arrays of bulk GaSb and InAs/GaSb Type-II superlattice pillars have been fabricated by electron beam lithography and dry etching. A 2.5 keV electron beam lithography system and metal evaporation are used to form the Au mask on superlattice and bulk substrates. Dry etching of these materials has been developed with BCl3:Ar, CH4:H2:Ar and cyclic CH4:H2:Ar/O2 plasmas. Etch temperatures were varied from 20 to 150 °C. The diameter of the superlattice pillars was below 50 nm with regular 200 nm spacing. Bulk GaSb pillars were etched with diameters below 20 nm. Areas of dense nanopillars as large as 500 μm×500 μm were fabricated. The best height/diameter aspect ratio was approximately 10:1. To date, these are the smallest diameter III–V superlattice pillar structures reported, and the first nanopillars in the InAs/GaSb material system. The basic theory of these devices and surface passivation with SiO2 and Si3N4 thin films has also been discussed. [reprint (PDF)]
 
1.  Defects in Organometallic Vapor-Phase Epitaxy-Grown GaInP Layers
Feng S.L., Bourgoin J.C., Omnes F., and Razeghi M.
Applied Physics Letters 59 (8), p. 941-- May 28, 1991 ...[Visit Journal]
Non-intentionally doped metalorganic vapor‐phase epitaxy Ga1−x InxP layers, having an alloy composition (x = 0.49) corresponding to a lattice matched to GaAs, grown by metalorganic chemical vapor deposition, have been studied by capacitance‐voltage and deep-level transient spectroscopy techniques. They are found to exhibit a free‐carrier concentration at room temperature of the order of 1015 cm−3. Two electron traps have been detected. The first one, at 75 meV below the conduction band, is in small concentration (∼1013 cm−3) while the other, at about 0.9 eV and emitting electrons above room temperature, has a concentration in the range 1014–1015 cm−3. [reprint (PDF)]
 
1.  

-- November 30, 1999
 
1.  Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers
M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken
SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal]
We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW. The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)]
 
1.  Angled cavity broad area quantum cascade lasers
Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, and M. Razeghi
Applied Physics Letters, Vol. 100, Np. 8, p. 081106-1-- August 20, 2012 ...[Visit Journal]
Angled cavity broad area quantum cascade lasers (QCLs) are investigated with surface gratingbased distributed feedback (DFB) mechanisms. It is found that an angled cavity incorporating a one dimensional DFB with grating lines parallel to the laser facet offers the simplest solution for single mode and diffraction limited emission in the facet normal direction. A room temperature single mode QCL with the highest output power for wavelengths longer than 10 micron is demonstrated. This structure could be applied to a wide range of laser structures for power scaling along with spectral and spatial beam control. [reprint (PDF)]
 
1.  High performance monolithic, broadly tunable mid-infrared quantum cascade lasers
WENJIA Zhou, DONGHAI Wu, RYAN McCLINTOCK, STEVEN SLIVKEN, AND MANIJEH RAZEGH1
Optica 4(10), p. 1228-- October 10, 2017 ...[Visit Journal]
Mid-infrared lasers, emitting in the spectral region of 3-12 µm that contains strong characteristic vibrational tran­sitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applica­tions still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a mono­lithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 µm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broad­band antireflection coating. Nearly fundamental transverse­mode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1 °). The demon­strated laser source opens new opportunities for mid-infrared spectroscopy. [reprint (PDF)]
 
1.  Novel Green Light Emitting Diodes: Exploring Droop-Free Lighting Solutions for a Sustainable Earth
M. Razeghi, C. Bayram, R. McClintock, F. Hosseini Teherani, D.J. Rogers, and V.E. Sandana
Journal of Light Emitting Diodes, Vol. 2, No. 1, p. 1-33-- April 30, 2010 ...[Visit Journal]
The total annual energy consumption in the United States for lighting is approximately 800 Terawatt-hours and costs $80 billion to the public. The energy consumed for lighting throughout the world entails to greenhouse gas emission equivalent to 70% of the emissions from all the cars in the world. Novel solutions to lighting with higher efficiency will drastically reduce the energy consumption and help greenhouse gas emissions to be lowered. Novel green light emitting diodes are the key components of an affordable, durable and environmentally benign lighting solution that can achieve unique spectral quality and promise superior energy conversion efficiency. Light-emitting diodes (LEDs), based on the InGaN alloy, are currently the most promising candidates for realizing solid state lighting (SSL). InGaN is a direct wide bandgap semiconductor with an emission that can span the entire visible spectrum via compositional tuning. However, InGaN LED performance remains wavelength-dependent. Indeed, ultrabright and efficient blue InGaN-based LEDs are readily available but the performance of InGaN-based green LEDs is still far from adequate for use in SSL. Our recent work demonstrated hybrid green light-emitting diodes (LEDs) comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN were grown on semi-insulating AlN/sapphire using pulsed laser deposition for the n-ZnO and metal organic chemical vapor deposition for the other layers.. We have shown that atop grown ZnO layer by Pulsed Laser Deposition can be a good replacement for GaN. The green wavelength emission requires significant indium content in the active layer (growth temperature ~ 700ºC) that makes InGaN quantum wells very susceptible to thermal degradation. With our technology, diffusion and segregation of indium in the green emitting active is inhibited thanks to the lower ZnO deposition temperatures (<600ºC) than is required for GaN (>1000ºC). Our novel technology preserves the integrity of the as-grown active layer and demonstrates superior green spectral quality (as demonstrated for LEDs on c-sapphire). The results indicate that hybrid LED structures could hold prospects for the development of green LEDs with superior performance.
 
1.  Very high wall plug efficiency of quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010 ...[Visit Journal]
We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. [reprint (PDF)]
 

Page 20 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21 22 23 24 25  >> Next  (606 Items)