Page 20 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21  >> Next  (517 Items)

1.  High magnetic field studies of the two‐dimensional electron gas in GaInAs‐InP superlattices
J. C. Portal; R. J. Nicholas; M. A. Brummell; M. Razeghi; M. A. Poisson
J. C. Portal, R. J. Nicholas, M. A. Brummell, M. Razeghi, M. A. Poisson; High magnetic field studies of the two‐dimensional electron gas in GaInAs‐InP superlattices. Appl. Phys. Lett. 1 August 1983; 43 (3): 293–295.-- August 1, 1983 ...[Visit Journal]
We report the observation of Shubnikov–de Haas oscillations in superlattices of GaInAs and InP, showing evidence of two‐dimensional behavior. The electron g‐factor is deduced from both the criteria for resolution of a spin splitting by comparison with the broadening parameter Γ, and from the tilted field method, and is shown to increase with increasing resolution of the Landau levels in a manner consistent with the theory of Ando and Uemura. In the ultraquantum limit, structure at ν=1/2 and ν=1/3 is observed. [reprint (PDF)]
 
1.  Frequency-Shifted Polaron Coupling in Ga0.47In0.53As Heterojunctions
R. J. Nicholas*, L. C. Brunel, S. Huant, K. Karrai, and J. C. Portal† M. A. Brummell M. Razeghi K. Y. Cheng and A. Y. Cho
Phys. Rev. Lett. 55, 883 – 1985-- August 19, 1985 ...[Visit Journal]
Frequency-dependent cyclotron-resonance measurements are reported on Ga0.47In0.53As-InP and Ga0.47In0.53A⁢s−A⁢l0.48In0.52As heterojunctions. Discontinuities in the effective mass occur at two frequencies as a result of resonant polaron coupling with both optic-phonon modes present in the Ga0.47In0.53As alloy. The coupling occurs at the frequencies at the TO phonons, in contrast to measurements on bulk materials. Possible changes in the screening and polarization of the optic-phonon modes are considered. [reprint (PDF)]
 
1.  AlxGa1-xN Materials and Device Technology for Solar Blind Ultraviolet Photodetector Applications
R. McClintock, P. Sandvik, K. Mi, F. Shahedipour, A. Yasan, C. Jelen, P. Kung, and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4288, pp. 219-- January 22, 2001 ...[Visit Journal]
There has been a growing interest for the development of solar blind ultraviolet (UV) photodetectors for use in a variety of applications, including early missile threat warning, flame monitoring, UV radiation monitoring and chemical/biological reagent detection. The AlxGa1-xN material system has emerged as the most promising approach for such devices. However, the control of the material quality and the device technology are still rather immature. We report here the metalorganic chemical vapor deposition, the n-type and the p-type doping of high quality AlxGa1-xN thin films on sapphire substrates over a wide range of Al concentration. [reprint (PDF)]
 
1.  Temperature dependence of the quantized Hall effect
H. P. Wei, A. M. Chang, and D. C. Tsui M. Razeghi
Phys. Rev. B 32, 7016(R) 1985-- November 15, 1985 ...[Visit Journal]
We reported detailed measurements of the temperature dependence of the quantized Hall effect from 4.2 to 50 K in the i=2 plateau region in InGaAs-InP. We deduce from the data that there is a significant density of localized states between the two Landau levels, with a value of ∼1×1010 cm−2 meV−1 at the middle of the mobility gap. We also found that the correlations between 𝜎xx and 𝜎xy show the trend predicted by the recent two-parameter scaling theory of localization in quantized Hall effect. [reprint (PDF)]
 
1.  AlGaN ultraviolet detectors
M. Razeghi and A. Rogalski,
SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal]
Hitherto, the semiconductor ultraviolet (UV) detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to anew generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is described in detail. [reprint (PDF)]
 
1.  Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K
Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi
APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal]
We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)]
 
1.  p-doped GaAs/Ga0.51In0.49P quantum well intersub-band photodetectors
J. Hoff, X. He, M. Erdtmann, E. Bigan, M. Razeghi, and G.J. Brown
Journal of Applied Physics 78 (3)-- August 1, 1995 ...[Visit Journal]
Lattice‐matched p-doped GaAs–Ga0.51In0.49P quantum well intersub‐band photodetectors with three different well widths have been grown on GaAs substrates by metal‐organic chemical‐vapor deposition and fabricated into mesa structures. The photoresponse cutoff wavelength varies between 3.5 and 5.5 μm by decreasing the well width from 50 down to 25 Å. Dark current measurements as a function of temperature reveal activation energies for thermionic emission that closely correspond to measured cutoff wavelengths. Experimental results are in reasonable agreement with Kronig–Penney calculations. [reprint (PDF)]
 
1.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007 ...[Visit Journal]
This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. [reprint (PDF)]
 
1.  Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature
Z. Vashaei, C. Bayram and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal]
GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)]
 
1.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
1.  Temperature insensitivity of the Al-free InGaAsP/GaAs lasers for λ = 808 and 908 nm
M. Razeghi, H. Yi, J. Diaz, S. Kim, and M. Erdtmann
SPIE Conference, San Jose, CA; Proceedings 3001-- February 12, 1997 ...[Visit Journal]
n this work, we present our recent achievements for the reliability of the Al-free lasers at high temperatures and high powers. Laser operations up to 30,000 hours were achieved without any degradation in the lasers characteristics from 7 randomly selected InGaAsP/GaAs diodes for λ = 808 nm. The test were performed for lasers without mirror-coating for optical power of 0.5 to 1 W CW at 50 approximately 60 °C. To the best of our knowledge, this is the first direct demonstration of the extremely high reliability of Al-free diodes operations at high powers and temperatures for periods of time much longer than practical need (approximately 3 years). The characteristics during the tests are discussed in detail. [reprint (PDF)]
 
1.  Beam Steering in High-Power CW Quantum Cascade Lasers
W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005 ...[Visit Journal]
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. [reprint (PDF)]
 
1.  Imprinting of Nanoporosity in Lithium-Doped Nickel Oxide through the use of Sacrificial Zinc Oxide Nanotemplates
Vinod E. Sandana, David J. Rogers, Ferechteh H. Teheran1, Philippe Bove, Ryan McClintock and Manijeh Razeghi
Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101052C-- April 3, 2017 ...[Visit Journal]
Methods for simultaneously increasing the conductivity and the porosity of NiO layers grown by pulsed laser deposition (PLD) were investigated in order to develop improved photocathodes for p-DSSC applications. NiO:Li (20at%) layers grown on c-Al2O3 by PLD showed a sharp drop in conductivity with increasing substrate temperature. Layers grown at room temperature were more than two orders of magnitude more conductive than undoped NiO layers but did not show evidence of any porosity in Scanning Electron Microscope (SEM) images. A new method for imposing a nanoporosity in NiO was developed based on a sacrificial template of nanostructured ZnO. SEM images and EDX spectroscopy showed that a nanoporous morphology had been imprinted in the NiO overlayer after preferential chemical etching away of the nanostructured ZnO underlayer. Beyond p-DSSC applications, this new process could represent a new paradigm for imprinting porosity in a whole range of materials. [reprint (PDF)]
 
1.  III-Nitride avalanche photodiodes
R. McClintock, J.L. Pau, C. Bayram, B. Fain, P. Giedratis, M. Razeghi and M. Ulmer
SPIE Proceedings, San Jose, CA Volume 7222-0U-- January 26, 2009 ...[Visit Journal]
Research into avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing photodetectors to utilize low-noise impact ionization based gain, GaN APDs operating in Geiger mode can deliver gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs, and present our latest results regarding linear and Geiger mode III-Nitride based APDs. This includes novel device designs such as separate absorption and multiplication APDs (SAM-APDs). We also discuss control of the material quality and the critical issue of p-type doping - demonstrating a novel delta-doping technique for improved material quality and enhanced electric field confinement. The spectral response and Geiger-mode photon counting performance of these devices are then analyzed under low photon fluxes, with single photon detection capabilities being demonstrated. Other major technical issues associated with the realization of high-quality visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 
1.  Superlattice sees colder objects in two colors and high resolution
M. Razeghi
SPIE Newsroom-- February 10, 2012 ...[Visit Journal]
A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)]
 
1.  Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition
K.‐H. Goetz; D. Bimberg; H. Jürgensen; J. Selders; A. V. Solomonov; G. F. Glinskii; M. Razeghi
K.‐H. Goetz, D. Bimberg, H. Jürgensen, J. Selders, A. V. Solomonov, G. F. Glinskii, M. Razeghi; Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44March 29, 1983 ...[Visit Journal]
Optical, crystallographic, and transport properties of nominally undoped n‐type and Zn doped p‐type Gax In1−xAs /InP (0.44 [reprint (PDF)]
 
1.  1.2–1.6 μm GaxIn1−xAsyP1−y-InP DH lasers grown by LPMOCVD
M. Razeghi, B. de Crémoux, J.P. Duchemin
M. Razeghi, B. de Crémoux, J.P. Duchemin, 1.2–1.6 μm GaxIn1−xAsyP1−y-InP DH lasers grown by LPMOCVD, Journal of Crystal Growth, Volume 68, Issue 1, 1984, Pages 389-397,-- September 1, 1984 ...[Visit Journal]
Room temperature pulse operation and continuous wave (CW) operation in the 1.2–1.6 μm region have been achieved in GaInAsP-InP DH lasers fabricated on material grown by LPMOCVD. Threshold currents density as low as 430 A/cm2 (cavity length of 950 μm) have been measured for devices emitting at 1.3 μm. Threshold current densities of 1060 A/cm2 (cavity length of 400 μm) have been obtained for devices emitting at 1.55 μm, with active layer thicknesses of 0.22 μm. Values of T0 between 60 and 70 K have been obtained. Fundamental transverse mode oscillation has been achieved (for CW operation) up to an output power of 10 mW. The preliminary results on the aging test are most encouraging and demonstrate that the LPMOCVD lasers emitting at 1.2–1.6 μm have comparable degradation rates to those of LPE lasers suggesting the LPMOCVD technique is promising for large scale production of laser diodes. [reprint (PDF)]
 
1.  MOCVD challenge for III-V semiconductor materials for photonic and electronic devices on alternative substrates
M. Razeghi, M. Defour , F. Omnes, P. Maurel , E. Bigan , O. Acher, J. Nagle, F. Brillouet , J.C. Portal
M. Razeghi, M. Defour, F. Omnes, P. Maurel, E. Bigan, O. Acher, J. Nagle, F. Brillouet, J.C. Portal, MOCVD challenge for III-V semiconductor materials for photonic and electronic devices on alternative substrates, Journal of Crystal Growth, Volume 93, Issues 1–4, 1988, Pages 776-781,-- January 1, 1988 ...[Visit Journal]
High quality II[-V semiconductor heterojunctions, quantum wells and superlauices have been grown on lattice matched and alternative substrates such as silicon for photonic and electronic devices, using low pressure metalorganic chemical vapor deposition growth technique. [reprint (PDF)]
 
1.  Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi
IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal]
Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)]
 
1.  Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes
S. Bogdanov, B.M. Nguyen, A.M. Hoang, and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 183501-1-- May 2, 2011 ...[Visit Journal]
Dielectric passivation of long wavelength infrared Type-II InAs/GaSb superlattice photodetectors with different active region doping profiles has been studied. SiO2 passivation was shown to be efficient as long as it was not put in direct contact with the highly doped superlattice. A hybrid graded doping profile combined with the shallow etch technique reduced the surface leakage current in SiO2 passivated devices by up to two orders of magnitude compared to the usual design. As a result, at 77 K the SiO(2) passivated devices with 10.5 μm cutoff wavelength exhibit an R0A of 120 Ω·cm², RmaxA of 6000 Ω·cm², and a dark current level of 3.5×10−5 A·cm−2 at −50 mV bias. [reprint (PDF)]
 
1.  Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Manijeh Razeghi, Arash Dehzangi, Jiakai Li
Results in Optics Volume 2, January 2021, 100054 https://doi.org/10.1016/j.rio.2021.100054 ...[Visit Journal]
Type-II InAs/GaSb superlattices (T2SLs) has drawn a lot of attention since it was introduced in 1970, especially for infrared detection as a system of multi-interacting quantum wells. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process, which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). As a pioneer in the field, center for quantum devices (CQD) has been involved in growth, design, characterization, and introduction of T2SL material system for infrared photodetection. In this review paper, we will present the latest development of bias-selectable multi-band infrared photodetectors at the CQD, based on InAs/GaSb/AlSb and InAs/InAs1-xSbx type-II superlattice. [reprint (PDF)]
 
1.  High Performance Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
M. Razeghi, S. Slivken, A. Tahraoui and A. Matlis
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
Recent improvements in quantum cascade laser technology have led to a number of very impressive results. This paper is a brief summary of the technological development and state-of- the-art performance of quantum cascade lasers produced at the Center for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Room temperature QCL operation has been reported for lasers emitting between 5 - 11 μm, with 9 - 11 μm lasers operating up to 425 K. We also demonstrate record room temperature peak output powers at 9 and 11 μm(2.5 W and 1 W respectively) as well as record low 80 K threshold current densities (250 A/cm²) for some laser designs. Finally, some of the current limitations to laser efficiency are mentioned, as well as a means to combat them. [reprint (PDF)]
 
1.  Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes
M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi
SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal]
We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)]
 
1.  Optical losses of Al-free lasers for λ = 0.808 and 0.98 μm
H. Yi, J. Diaz, B. Lane, and M. Razeghi
Applied Physics Letters 69 (20)-- November 11, 1996 ...[Visit Journal]
In this work, we study the origin of the optical losses in Al‐free InGaAsP/GaAs (λ=0.808 μm) and InGaAs/GaAs/InGaP (λ=0.980 μm) lasers. Theoretical modeling and the experimental results indicate that the scattering of the laser beam by refractive index fluctuation in the alloys is the dominant loss in our lasers, and the loss due to the free‐carrier absorption and scattering by interface roughness are negligible. [reprint (PDF)]
 
1.  High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs
Steven Slivken and Manijeh Razeghi
Photonics 2022, 9(4), 231 (COVER ARTICLE) ...[Visit Journal]
The motivation behind this work is to show that InP-based intersubband lasers with high power can be realized on substrates with significant lattice mismatch. This is a primary concern for the integration of mid-infrared active optoelectronic devices on low-cost photonic platforms, such as Si. As evidence, an InP-based mid-infrared quantum cascade laser structure was grown on a GaAs substrate, which has a large (4%) lattice mismatch with respect to InP. Prior to laser core growth, a metamorphic buffer layer of InP was grown directly on a GaAs substrate to adjust the lattice constant. Wafer characterization data are given to establish general material characteristics. A simple fabrication procedure leads to lasers with high peak power (>14 W) at room temperature. These results are extremely promising for direct quantum cascade laser growth on Si substrates. [reprint (PDF)]
 

Page 20 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21  >> Next  (517 Items)