| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 19 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (493 Items)
| 1. | Generalized k·p perturbation theory for atomic-scale superlattices H. Yi and M. Razeghi Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal] We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)] |
| 1. | Nitrides push performance of UV photodiodes Can Bayram; Manijeh Razeghi Laser Focus World. 45(9), pp. 47-51 (2009)-- September 1, 2009 ...[Visit Journal] The nitrides are known to be useful for creating the UV single-photon detectors with efficiencies of 20%, with its considerable advantages that could further enable quantum computing and data encryption. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy. The use of SAM regions is a common approach to reducing multiplication noise and enhancing gain through impact-ionization engineering that could benefit from the higher ionization coefficient by offering lower noise performance and higher gain. The ADPs also enables the realization of single-photon detection by using Geiger-mode operation, which entails operating the ADPs well above the breakdown voltage and using pulse-quenching circuitry. |
| 1. | Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, and M. Razeghi Virtual Journal of Nanoscale Science & Technology, 5-- August 5, 2002 ...[Visit Journal][reprint (PDF)] |
| 1. | Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 7, 045313 -- April 26, 2017 ...[Visit Journal] Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)] |
| 1. | GaN nanostructured p-i-n photodiodes J.L. Pau, C. Bayram, P. Giedraitis, R. McClintock, and M. Razeghi Applied Physics Letters, Vol. 93, No. 22, p. 221104-1-- December 1, 2008 ...[Visit Journal] We report the fabrication of nanostructured p-i-n photodiodes based on GaN. Each device comprises arrays of ~200 nm diameter and 520 nm tall nanopillars on a 1 µm period, fabricated by e-beam lithography. Strong rectifying behavior was obtained with an average reverse current per nanopillar of 5 fA at −5 V. In contrast to conventional GaN diodes, nanostructured devices reproducibly show ideality factors lower than 2. Enhanced tunneling through sidewall surface states is proposed as the responsible mechanism for this behavior. Under backillumination, the quantum efficiency in nanostructured devices is partly limited by the collection efficiency of holes into the nanopillars. [reprint (PDF)] |
| 1. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)] |
| 1. | High Performance Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy M. Razeghi, S. Slivken, A. Tahraoui and A. Matlis SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal] Recent improvements in quantum cascade laser technology have led to a number of very impressive results. This paper is a brief summary of the technological development and state-of- the-art performance of quantum cascade lasers produced at the Center for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Room temperature QCL operation has been reported for lasers emitting between 5 - 11 μm, with 9 - 11 μm lasers operating up to 425 K. We also demonstrate record room temperature peak output powers at 9 and 11 μm(2.5 W and 1 W respectively) as well as record low 80 K threshold current densities (250 A/cm²) for some laser designs. Finally, some of the current limitations to laser efficiency are mentioned, as well as a means to combat them. [reprint (PDF)] |
| 1. | Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal] We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with
decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the near room temperature applications J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal] We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
| 1. | Reliable GaN-based resonant tunneling diodes with reproducible room-temperature negative differential resistance C. Bayram, D.K. Sadana, Z. Vashaei and M. Razeghi SPIE Proceedings, Vol. 8268, p. 826827-- January 22, 2012 ...[Visit Journal] negative differential resistance (NDR). Compared to other negative resistance devices such as (Esaki) tunnel and transferred-electron devices, RTDs operate much faster and at higher temperatures. III-nitride materials, composed of AlGaInN alloys, have wide bandgap, high carrier mobility and thermal stability; making them ideal for high power high frequency RTDs. Moreover, larger conduction band discontinuity promise higher NDR than other materials (such as GaAs) and room-temperature operation. However, earlier efforts on GaN-based RTD structures have failed to achieve a
reliable and reproducible NDR. Recently, we have demonstrated for the first time that minimizing dislocation density and eliminating the piezoelectric fields enable reliable and reproducible NDR in GaN-based RTDs even at room
temperature. Observation of NDR under both forward and reverse bias as well as at room and low temperatures attribute the NDR behaviour to quantum tunneling. This demonstration marks an important milestone in exploring III-nitride quantum devices, and will pave the way towards fundamental quantum transport studies as well as for high frequency
optoelectronic devices such as terahertz emitters based on oscillators and cascading structures. [reprint (PDF)] |
| 1. | Observation of Room Temperature Surface-Emitting Stimulated Emission from GaN:Ge by Optical pumping X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi Journal of Applied Physics 80 (11)-- December 1, 1996 ...[Visit Journal] Optically pumped surface-emitting stimulated emission at room temperature was observed from GaN:Ge grown by metalorganic chemical vapor deposition. The sample was optically pumped perpendicularly on the top surface while the stimulated emission was collected from the back colinearly with the pump beam. The cavity was formed by the GaN/air and GaN/sapphire interfaces without any other structure. The stimulated emission was gain guided by the pump beam. The threshold optical pump density for stimulated emission was approximately 2.8 MW/cm² and the linewidth was 2.5 nm. The emission from GaN:Ge showed a redshift as the pump density increased. The comparison between theoretical calculations and experimental results suggested that many-body interactions can account well for the redshift. [reprint (PDF)] |
| 1. | Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007 ...[Visit Journal] Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. [reprint (PDF)] |
| 1. | Electrically pumped photonic crystal distributed feedback quantum cascade lasers Y. Bai, P. Sung, S.R. Darvish, W. Zhang, A. Evans, S. Slivken, and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000A-1-8.-- February 1, 2008 ...[Visit Journal] We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~ 4.75 µm. Ridge waveguides of 50 µm and 100 µm width were fabricated with both PCDFB and Fabry-Perot feedback mechanisms. The Fabry-Perot device has a broad emitting spectrum and a broad far-field character. The PCDFB devices have primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half-maximum of 4.8 degrees and 2.4 degrees for the 50 µm and 100 µm ridge widths, respectively.
[reprint (PDF)] |
| 1. | Solar-blind AlGaN photodiodes with very low cutoff wavelength D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi Applied Physics Letters 76 (4)-- January 24, 2000 ...[Visit Journal] We report the fabrication and characterization of AlxGa1–xN photodiodes (x~0.70) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The peak responsivity for –5 V bias is 0.11 A/W at 232 nm, corresponding to an internal quantum efficiency greater than 90%. The device response drops four orders of magnitude by 275 nm and remains at low response for the entire near-ultraviolet and visible spectrum. Improvements were made to the device design including a semitransparent Ni/Au contact layer and a GaN:Mg cap layer, which dramatically increased device response by enhancing the carrier collection efficiency. [reprint (PDF)] |
| 1. | Optoelectronic Integrated Circuits (OEICs) for Next Generation WDM Communications M. Razeghi and S. Slivken SPIE Conference, Boston, MA, -- July 29, 2002 ...[Visit Journal] This paper reviews some of the key enabling technologies for present and future optoelectronic intergrated circuits. This review concentrates mainly on technology for lasers, waveguides, modulators, and fast photodetectors as the basis for next generation communicatiosn systems. Emphasis is placed on intergrations of components and mass production of a generic intelligent tranciever. [reprint (PDF)] |
| 1. | Passivation of Type-II InAs/GaSb superlattice photodetectors A. Hood, Y. Wei, A. Gin, M. Razeghi, M. Tidrow, and V. Nathan SPIE Conference, Jose, CA, Vol. 5732, pp. 316-- January 22, 2005 ...[Visit Journal] Leakage currents limit the operation of high performance Type-II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant limiting factor, especially at the scale of a focal plane array pixel (< 25 µm) and must be addressed. A reduction of the surface state density, unpinning the Fermi level at the surface, and appropriate termination of the semiconductor crystal are all aims of effective passivation. Recent work in the passivation of Type-II InAs\GaSb superlattice photodetectors with aqueous sulfur-based solutions has resulted in increased R0A products and reduced dark current densities by reducing the surface trap density. Additionally, photoluminescence of similarly passivated Type-II InAs/GaSb superlattice and InAs GaSb bulk material will be discussed. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 ...[Visit Journal] In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
| 1. | Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes D. Hoffman, A. Hood, F. Fuchs and M. Razeghi Journal of Applied Physics 99-- February 15, 2006 ...[Visit Journal] The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. [reprint (PDF)] |
| 1. | Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays S. Tsao, T. Yamanaka, S. Abdollahi Pour, I-K Park, B. Movaghar and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7234-0V-- January 25, 2009 ...[Visit Journal] InAs quantum dots embedded in InGaAs quantum wells with InAlAs barriers on InP substrate grown by metalorganic chemical vapor deposition are utilized for high operating temperature detectors and focal plane arrays in the middle wavelength infrared. This dot-well combination is unique because the small band offset between the InAs dots and the InGaAs well leads to weak dot confinement of carriers. As a result, the device behavior differs significantly from that in the more common dot systems that have stronger confinement. Here, we present energy level modeling of our QD-QW system and apply these results to interpret the detector behavior. Detectors showed high performance with D* over 1010 cm·Hz1/2W-1 at 150 K operating temperature and with high quantum efficiency over 50%. Focal plane arrays have been demonstrated operating at high temperature due to the low dark current observed in these devices. [reprint (PDF)] |
| 1. | Deep Fe and intrinsic defect levels in Ga0.47In0.53As/InP K.‐H. Goetz; D. Bimberg; K.‐A. Brauchle; H. Jürgensen; J. Selders; M. Razeghi; E. Kuphal K.‐H. Goetz, D. Bimberg, K.‐A. Brauchle, H. Jürgensen, J. Selders, M. Razeghi, E. Kuphal; Deep Fe and intrinsic defect levels in Ga0.47In0.53As/InP. Appl. Phys. Lett. 1 February 1985; 46-- February 1, 1985 ...[Visit Journal] Two deep traps in Ga0.47In0.53As/InP:Fe at a depth of 110 meV and 150 meV, respectively, are observed for the first time using low‐temperature photoluminescence and deep level transient spectroscopy. The dependence of luminescence intensity on the growth process itself (liquid phase epitaxy, vapor phase epitaxy, and metalorganic chemical vapor deposition) and its parameters (growth temperature, layer thickness) and the substrate doping is reported and leads to the unambigous identification of the 150‐meV acceptorlike trap as being caused by Fe impurities. Fe diffuses from the substrate to the epitaxial layer during the growth process. This outdiffusion is less pronounced for layers grown at lower temperature. The level at 110 meV which is also observed in layers grown on InP:S substrate is tentatively assigned to an intrinsic defect of Ga0.47In0.53As. [reprint (PDF)] |
| 1. | High-performance InP-based midinfrared quantum cascade lasers at Northwestern University M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal] We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)] |
| 1. | Growth and characterization of InSbBi for long wavelength infrared photodetectors J.J. Lee, J.D. Kim, and M. Razeghi Applied Physics Letters 70 (24)-- June 16, 1997 ...[Visit Journal] The epitaxial growth of InSbBi ternary alloys by low-pressure metalorganic chemical vapor deposition is reported on. X-ray diffraction spectra showed well resolved peaks of InSbBi and InSb films. Bi incorporation was confirmed by energy dispersive x-ray analysis. Photoresponse spectrum up to 9.3 μm which corresponds to 0.13 eV energy band gap has been measured in a sample with Bi composition of 5.8 at.% at 77 K. Electron mobility at room temperature ranges from 44 100 to 4910 cm²/V·s as Bi composition increases. [reprint (PDF)] |
| 1. | Evaluating the size-dependent quantum efficiency loss in a SiO2-Y2O3 hybrid gated type-II InAs/GaSb long-infrared photodetector array G. Chen , A. M. Hoang , and M. Razeghi Applied Physics Letters 104 , 103509 (2014)-- March 14, 2014 ...[Visit Journal] Growing Y2O3 on 20 nm SiO2 to passivate a 11 μm 50% cut-off wavelength long-wavelength infrared type-II superlattice gated photodetector array reduces its saturated gate bias (VGsat ) to −7 V. Size-dependent quantum efficiency (QE) losses are evaluated from 400 μm to 57 μm size gated photodiode. Evolution of QE of the 57 μm gated photodiode with gate bias and diode operation bias reveals different surface recombination mechanisms. At 77 K and VG,sat , the 57 μm gated photodiode exhibits QE enhancement from 53% to 63%, and it has 1.2 × 10−5 A/cm² dark current density at −200 mV, and a specific detectivity of 2.3 × 1012 Jones. [reprint (PDF)] |
| 1. | Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer Akhil Rajan, David J Rogers, Cuong Ton-That, Liangchen Zhu, Matthew R Phillips, Suresh Sundaram, Simon Gautier, Tarik Moudakir, Youssef El-Gmili, Abdallah Ougazzaden, Vinod E Sandana, Ferechteh H Teherani, Philippe Bove, Kevin A Prior, Zakaria Djebbour, Ryan McClintock and Manijeh Razeghi Journal of Physics D: Applied Physics, Volume 49, Number 31 -- July 15, 2016 ...[Visit Journal] Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling. [reprint (PDF)] |
| 1. | High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector S. Tsao, H. Lim, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007 ...[Visit Journal] This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. [reprint (PDF)] |
Page 19 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (493 Items)
|