Page 19 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21 22 23 24 25 26 27 28  >> Next  (676 Items)

2.  Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature
S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu and M. Razeghi
Applied Physics Letters, Vol. 100, No. 26, p. 261112-1-- June 25, 2012 ...[Visit Journal]
A dual-section, single-mode quantum cascade laser is demonstrated in continuous wave at room temperature with up to 114 nm (50 cm−1) of tuning near a wavelength of 4.8 μm. Power above 100 mW is demonstrated, with a mean side mode suppression ratio of 24 dB. By changing the grating period, 270 nm (120 cm−1) of gap-free electrical tuning for a single gain medium has been realized. [reprint (PDF)]
 
2.  High quantum efficiency two color type-II InAs/GaSb n-i-p-p-i-n photodiodes
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, A. Hood, E.K. Huang, M. Razeghi, and M.Z. Tidrow
Applied Physics Letters, Vol. 92, No. 11, p. 111112-1-- March 17, 2008 ...[Visit Journal]
A n-i-p-p-i-n photodiode based on type-II InAs/GaSb superlattice was grown on a GaSb substrate. The two channels, with respective 50% of responsivity cutoff wavelengths at 7.7 and 10 µm, presented quantum efficiencies (QEs) of 47% and 39% at 77 K. The devices can be operated as two diodes for simultaneous detection or as a single n-i-p-p-i-n detector for sequential detection. In the latter configuration, the QEs at 5.3 and 8.5 µm were measured as high as 40% and 39% at 77 K. The optical cross-talk between the two channels could be reduced from 0.36 to 0.08 by applying a 50 mV bias. [reprint (PDF)]
 
2.  Core-shell GaN-ZnO Moth-eye Nanostructure Arrays Grown on a-SiO2/Si (111) as a basis for Improved InGaN-based Photovoltaics and LEDs
D.J. Rogers, V.E. Sandana, S. Gautier, T. Moudakir, M. Abid, A. Ougazzaden, F. Hosseini Teherani, P. Bove, M. Molinari, M. Troyon, M. Peres, Manuel J. Soares, A.J. Neves, T. Monteiro, D. McGrouther, J.N. Chapman, H.-J. Drouhin, R. McClintock, M. Razeghi
Photonics and Nanostructures - Fundamentals and Applications, Volume 15, Pages 53-58-- March 30, 2015 ...[Visit Journal]
Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (111) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400–720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN. [reprint (PDF)]
 
2.  RT-CW: widely tunable semiconductor THz QCL sources
M. Razeghi; Q. Y. Lu
Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications -- September 26, 2016 ...[Visit Journal]
Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)]
 
2.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
2.  MOCVD Growth of ZnO Nanostructures Using Au Droplets as Catalysts
V.E. Sandana, D.J. Rogers, F.H. Teherani, R. McClintock, M. Razeghi, H.J. Drouhin, M.C. Clochard, V. Sallett, G. Garry and F. Fayoud
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Zinc Oxide Materials and Devices III, Vol. 6895, p. 68950Z-1-6.-- February 1, 2008 ...[Visit Journal]
ZnO nanostructures were synthesised by Metal Organic Chemical Vapor Deposition growth on Si (100) and c-Al2O3 substrates coated with a 5nm thick layer of Au. The Au coated substrates were annealed in air prior to deposition of ZnO so as to promote formation of Au nanodroplets. The development of the nanodroplets was studied as a function of annealing duration and temperature. Under optimised conditions, a relatively homogeneous distribution of regular Au nanodroplets was obtained. Using the Au nanodroplets as a catalyst, MOCVD growth of ZnO nanostructures was studied. Scanning electron microscopy revealed nanostructures with various forms including commonly observed structures such as nanorods, nanoneedles and nanotubes. Some novel nanostructures were also observed, however, which resembled twist pastries and bevelled-multifaceted table legs. [reprint (PDF)]
 
2.  High-power mid- and far- wavelength infrared lasers for free space communication
M. Razeghi; A. Evans; J. Nguyen; Y. Bai; S. Slivken; S.R. Darvish; K. Mi
Proc. SPIE 6593, Photonic Materials, Devices, and Applications II, 65931V (June 12, 2007)-- June 12, 2007 ...[Visit Journal]
Laser-based free-space communications have been developed to serve specific roles in "last mile" high-speed data networks due to their high security, low cost, portability, and high bandwidth. Conventional free-space systems based on near infrared optical devices suffer from reliability problems due to atmospheric scattering losses and scintillation effects, such as those encountered with storms, dust, and fog. Mid-infrared wavelengths are less affected by atmospheric effects and can significantly enhance link up-time and range. This paper will discuss some of the recent advances in high-power, high temperature, high reliability mid-infrared Quantum Cascade Lasers and their potential application in highly reliable free space communication links. [reprint (PDF)]
 
2.  Techniques for High-Quality SiO2 Films
J. Nguyen and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791K-1-8-- January 29, 2007 ...[Visit Journal]
We report on the comparison of optical, structural, and electrical properties of SiO2 using plasma-enhanced chemical vapor deposition and ion-beam sputtering deposition. High-quality, low-temperature deposition of SiO2 by ion-beam sputtering deposition is shown to have lower absorption, smoother and more densely packed films, a lower amount of fixed oxide charges, and a lower trapped-interface density than SiO2 by plasma-enhanced chemical vapor deposition. This high-quality SiO2 is then demonstrated as an excellent electrical and mechanical surface passivation layer on Type-II InAs/GaSb photodetectors [reprint (PDF)]
 
2.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Applied Physics Letters 80 (22)-- June 3, 2002 ...[Visit Journal]
High-power quantum cascade lasers emitting at λ > 9 μm are demonstrated. Accurate control of layer thickness and interfaces is evidenced by x-ray diffraction. Excellent peak power for uncoated lasers, up to 3.5 W per facet for a 25 μm emitter width, is obtained at 300 K for 75 period structures. The threshold current density at 300 K is only 1.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature, T0, of 167 K. Over 150 mW of average power is measured per facet for a duty cycle of 6%. Simulation of the average power output reveals a thermal resistance of 12 K/W for epilayer-up mounted ridges. [reprint (PDF)]
 
2.  Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window
H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel
IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
2.  Long-Wavelength InAsSb Photoconductors Operated at Near Room Temperatures (200-300 K)
J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi
Applied Physics Letters., 68 (1),-- January 1, 1996 ...[Visit Journal]
Long-wavelength InAs1−xSbx photoconductors operated without cryogenic cooling are reported. The devices are based on p-InAs1−xSbx/p-InSb heterostructures grown on (100) semi-insulating GaAs substrates by low pressure metalorganic chemical vapor deposition (LP‐MOCVD). Photoreponse up to 14 μm has been obtained in a sample with x=0.77 at 300 K, which is in good agreement with the measured infrared absorption spectra. The corresponding effective lifetime of ≊0.14 ns at 300 K has been derived from stationary photoconductivity. The Johnson noise limited detectivity at λ=10.6 μm is estimated to be about 3.27×107 cm· Hz½/W at 300 K. [reprint (PDF)]
 
2.  Efficiency of photoluminescence and excess carrier confinement in InGaAsP/GaAs structures prepared by metal-organic chemical vapor deposition
J. Diaz, H.J. Yi, M. Erdtmann, X. He, E. Kolev, D. Garbuzov, E. Bigan, and M. Razeghi
Journal of Applied Physics 76 (2)-- July 15, 1994 ...[Visit Journal]
Special double‐ and separate‐confinement InGaAsP/GaAs heterostructures intended for photoluminescence measurements have been grown by low‐pressure metal‐organic chemical‐vapor deposition. The band gap of the active region quaternary material was close to 1.5 eV, and the waveguide of the separate‐confinement structures was near 1.8 eV. Measurement of the integrated luminescence efficiency at 300 K has shown that over a wide range of excitation level (10–103 W/cm²) radiative transitions are the dominant mechanism for excess carrier recombination in the active region of the structures studied. As determined by spectral measurements, the excess carrier concentration in the waveguide of the separate‐confinement heterostructures and the intensity of the waveguide emission band correspond to a condition of thermal equilibrium of the excess carrier populations in the active region and the waveguide. The ratio of the intensity of the waveguide emission to the active region emission fits a model which assumes that the barrier height for minority carriers (holes) is equal to the difference in band gaps between the active region and the waveguide region. [reprint (PDF)]
 
2.  A review of the growth, doping, and applications of β-Ga2O3 thin films
Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid
Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 ...[Visit Journal]
β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. [reprint (PDF)]
 
2.  Band gap tunability of Type-II Antimonide-based superlattices
M. Razeghi and B.M. Nguyen
Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010 ...[Visit Journal]
Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level. In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. [reprint (PDF)]
 
2.  Recent advances in mid infrared (3-5 μm) quantum cascade lasers
Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken
Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal]
Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)]
 
2.  High Carrier Lifetime InSb Grown on GaAs Substrates
E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja
Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal]
We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)]
 
2.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
2.  Room temperature terahertz semiconductor frequency comb
Quanyong Lu, Feihu Wang, Donghai Wu, Steven Slivken & Manijeh Razeghi
Nature Communications 10, 2403-- June 3, 2019 ...[Visit Journal]
A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy. [reprint (PDF)]
 
2.  Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates
P. Kung, C.J. Sun, A. Saxler, H. Ohsato, and M. Razeghi
Journal of Applied Physics 75 (9)-- May 1, 1994 ...[Visit Journal]
In this article, we present a crystallographic model to describe the epitaxial growth of wurtzite‐type thin films such as gallium nitride (GaN) on different orientations of sapphire (Al2O3) substrates. Through this model, we demonstrate the thin films grown on (00⋅1)Al2O3 have a better epilayer‐substrate interface quality than those grown on (01⋅2)Al2O3. We also show the epilayer grown on (00⋅1)Al2O3 are gallium‐terminated, and both (00⋅1) and (01⋅2) surfaces of sapphire crystals are oxygen‐terminated. [reprint (PDF)]
 
2.  Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers
Manijeh Razeghi Wenjia Zhou Ryan McClintock Donghai Wu Steven Slivken
Optical Engineering 57(1), 011018-- December 1, 2017 ...[Visit Journal]
We present recent progress on the development of monolithic, broadband, widely tunable midinfrared quantum cascade lasers. First, we show a broadband midinfrared laser gain realized by a heterogeneous quantum cascade laser based on a strain balanced composite well design of Al0.63In0.37As∕Ga0.35In0.65As∕ Ga0.47In0.53As. Single mode emission between 5.9 and 10.9 μm under pulsed mode operation was realized from a distributed feedback laser array, which exhibited a flat current threshold across the spectral range. Using the broadband wafer, a monolithic tuning between 6.2 and 9.1 μm was demonstrated from a beam combined sampled grating distributed feedback laser array. The tunable laser was utilized for a fast sensing of methane under pulsed operation. Transmission spectra were obtained without any moving parts, which showed excellent agreement to a standard measurement made by a Fourier transform infrared spectrometer. [reprint (PDF)]
 
2.  Growth of “moth-eye” ZnO nanostructures on Si(111), c-Al2O3, ZnO and steel substrates by pulsed laser deposition
Vinod E. Sandana, David J. Rogers, Ferechteh Hosseini Teherani, Philippe Bove, Michael Molinari, Michel Troyon, Alain Largeteau, Gérard Demazeau, Colin Scott, Gaelle Orsal, Henri-Jean Drouhin, Abdallah Ougazzaden, Manijeh Razeghi
Phys. Status Solidi C., 1-5 (2013)-- August 6, 2013 ...[Visit Journal]
Self-forming, vertically-aligned, arrays of black-body-like ZnO moth-eye nanostructures were grown on Si(111), c-Al2O3, ZnO and high manganese austenitic steel substrates using Pulsed Laser Deposition. X-ray diffraction (XRD) revealed the nanostructures to be well-crystallised wurtzite ZnO with strong preferential c-axis crystallographic orientation along the growth direction for all the substrates. Cathodoluminescence (CL) studies revealed emission characteristic of the ZnO near band edge for all substrates. Such moth-eye nanostructures have a graded effective refractive index and exhibit black-body characteristics. Coatings with these features may offer improvements in photovoltaic and LED performance. Moreover, since ZnO nanostructures can be grown readily on a wide range of substrates it is suggested that such an approach could facilitate growth of GaN-based devices on mismatched and/or technologically important substrates, which may have been inaccessible till present. [reprint (PDF)]
 
2.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm
B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010 ...[Visit Journal]
We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. [reprint (PDF)]
 
2.  Photonic crystal distributed feedback quantum cascade lasers with 12 W output power
Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal]
We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)]
 
2.  Type-II Superlattices and Quantum Cascade Lasers for MWIR and LWIR Free-Space Communications
A. Hood, A. Evans and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 690005-1-9.-- February 1, 2008 ...[Visit Journal]
Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high-speed data networks providing highly secure, short to long range, and high-bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's operating budget. By moving the operating wavelength into the mid- or long-wavelength infrared enhanced link uptimes and increased operating range can be achieved due to less susceptibility to atmospheric affects. The combination of room-temperature, continuous-wave, high-power quantum cascade lasers and high operating temperature type-II superlattice photodetectors offers the benefits of mid- and long-wavelength infrared systems as well as practical operating conditions for next generation free-space communications systems. [reprint (PDF)]
 
2.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007 ...[Visit Journal]
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). [reprint (PDF)]
 

Page 19 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21 22 23 24 25 26 27 28  >> Next  (676 Items)