About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 18 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal] Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this
multi-spectral detection.
In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage,
resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)] |
2. | GaN avalanche photodiodes grown on m-plane freestanding GaN substrate Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010 ...[Visit Journal] M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. [reprint (PDF)] |
2. | Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes E.K. Huang, D. Hoffman, B.M. Nguyen, P.Y. Delaunay and M. Razeghi Applied Physics Letters, Vol. 94, No. 5, p. 053506-1-- February 2, 2009 ...[Visit Journal] Inductively coupled plasma (ICP) dry etching rendered structural and electrical enhancements on type-II antimonide-based superlattices compared to those delineated by electron cyclotron resonance (ECR) with a regenerative chemical wet etch. The surface resistivity of 4×105 Ω·cm is evidence of the surface quality achieved with ICP etching and polyimide passivation. By only modifying the etching technique in the fabrication steps, the ICP-etched devices with a 9.3 µm cutoff wavelength revealed a diffusion-limited dark current density of 4.1×10−6 A/cm2 and a maximum differential resistance at zero bias in excess of 5300 Ω·cm2 at 77 K, which are an order of magnitude better in comparison to the ECR-etched devices. [reprint (PDF)] |
2. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
2. | Type-II InAs/GaSb Superlattices and Detectors with Cutoff Wavelength Greater Than 18 μm M. Razeghi, Y. Wei, A. Gin, G.J. Brown and D. Johnstone Proceedings of the SPIE, San Jose, CA, Vol. 4650, 111 (2002)-- January 25, 2002 ...[Visit Journal] The authors report the most recent advances in Type-II InAs/GaSb superlattice materials and photovoltaic detectors. Lattice mismatch between the substrate and the superlattice has been routinely achieved below 0.1%, and less than 0.0043% as the record. The FWHM of the zeroth order peak from x-ray diffraction has been decreased below 50 arcsec and a record of less than 44arcsec has been achieved. High performance detectors with 50% cutoff beyond 18 micrometers up to 26 micrometers have been successfully demonstrated. The detectors with a 50% cut-off wavelength of 18.8 micrometers showed a peak current responsivity of 4 A/W at 80K, and a peak detectivity of 4.510 cm·Hz½·W-1 was achieved at 80K at a reverse bias of 110 mV under 300 K 2(pi) FOV background. Some detectors showed a projected 0% cutoff wavelength up to 28~30 micrometers . The peak responsivity of 3Amp/Watt and detectivity of 4.2510 cm·Hz½·W-1 was achieved under -40mV reverse bias at 34K for these detectors. [reprint (PDF)] |
2. | Roadmap of Semiconductor Infrared Lasers and Detectors for the 21st Century M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] Since the first discovery, semiconductor infrared lasers and detectors have found many various applications in military, communications, medical, and industry sections. In this paper, the current status of semiconductor infrared lasers and detectors will be reviewed. Advantages and disadvantages of different methods and techniques is discussed later. Some basic physical limitations of current technology are studied and the direction to overcome these problems will be suggested. [reprint (PDF)] |
2. | Room temperature operation of 8-12 μm InSbBi infrared photodetectors on GaAs substrates J.J. Lee, J.D. Kim, and M. Razeghi Applied Physics Letters 73 (5)-- August 3, 1998 ...[Visit Journal] We report the room temperature operation of 8–12 μm InSbBi long-wavelength infrared photodetectors. The InSbBi/InSb heterostructures were grown on semi-insulating GaAs (001) substrates by low pressure metalorganic chemical vapor deposition. The voltage responsivity at 10.6 μm was about 1.9 mV/W at room temperature and the corresponding Johnson noise limited detectivity was estimated to be about 1.2×106 cm·Hz½/W. The carrier lifetime derived from the voltage dependent responsivity measurements was about 0.7 ns. [reprint (PDF)] |
2. | Molecular Beam Epitaxial Growth of High Quality InSb for p-i-n Photodetectors G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi Journal of Vacuum Science and Technology B, 13 (2)-- March 1, 1995 ...[Visit Journal] The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-inch Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)] |
2. | Growth of In1-xTlxSb, a New Infrared Material, by Low-Pressure Metalorganic Chemical Vapor Deposition Y.H. Choi, R. Sudharsanan, C, Besikci, and M. Razeghi Applied Physics Letters 63 (3)-- July 19, 1993 ...[Visit Journal] We report the growth of In1-xTlxSb, a new III-V alloy for long-wavelength infrared detector applications, by low-pressure metalorganic chemical vapor deposition. In1-xTlxSb with good surface morphology was obtained on both GaAs and InSb substrates at a growth temperature of 455 °C. X-ray diffraction measurements showed resolved peaks of In1-xTlxSb and InSb films. Infrared absorption spectrum of In1-xTlxSb showed a shift toward lower energies compared to InSb spectrum. Hall mobility data on In1-xTlxSb/InSb/GaAs structure showed enhanced mobility at low temperatures compared to InSb/GaAs structure. [reprint (PDF)] |
2. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Applied Physics Letters, 84 (13)-- April 29, 2004 ...[Visit Journal] We report a demonstration of an infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. The middle-wavelength infrared quantum-dot infrared photodetector (QDIP) structure was grown via low-pressure metal organic chemical vapor deposition. A detectivity of 3.6×1010 cm·Hz½/W was achieved at T = 95 K and a bias of –1.4 V. The background limited temperature of our QDIP was 140 K with a 45° field of view. A 256×256 detector array was fabricated with dry etching, and hybridized to a Litton readout chip by indium bumps. Thermal imaging was achieved at temperatures up to 120 K. At T = 77 K, the noise equivalent temperature difference was measured as 0.509 K with a 300 K background and f/2.3 optics. [reprint (PDF)] |
2. | Widely tuned room temperature terahertz quantum cascade laser sources Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi SPIE Proceedings, Vol. 8631, p. 863108-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] Room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference frequency generation are demonstrated. Two mid-infrared active cores in the longer mid-IR wavelength range (9-11 micron)based on the single-phonon resonance scheme are designed with a second-order difference frequency nonlinearity
specially optimized for the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)] |
2. | High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal] We report a room-temperature eight-element phase-locked quantum cascade laser
array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency
of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode
emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active
region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV)
design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge
type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)] |
2. | 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal] We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)] |
2. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
2. | High quantum efficiency two color type-II InAs/GaSb n-i-p-p-i-n photodiodes P.Y. Delaunay, B.M. Nguyen, D. Hoffman, A. Hood, E.K. Huang, M. Razeghi, and M.Z. Tidrow Applied Physics Letters, Vol. 92, No. 11, p. 111112-1-- March 17, 2008 ...[Visit Journal] A n-i-p-p-i-n photodiode based on type-II InAs/GaSb superlattice was grown on a GaSb substrate. The two channels, with respective 50% of responsivity cutoff wavelengths at 7.7 and 10 µm, presented quantum efficiencies (QEs) of 47% and 39% at 77 K. The devices can be operated as two diodes for simultaneous detection or as a single n-i-p-p-i-n detector for sequential detection. In the latter configuration, the QEs at 5.3 and 8.5 µm were measured as high as 40% and 39% at 77 K. The optical cross-talk between the two channels could be reduced from 0.36 to 0.08 by applying a 50 mV bias.
[reprint (PDF)] |
2. | High Power 280 nm AlGaN Light Emitting Diodes Based on an Asymmetric Single Quantum Well K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, and M. Razeghi Applied Physics Letters, 84 (7)-- February 16, 2004 ...[Visit Journal] We demonstrate high-power AlGaN-based ultraviolet light-emitting diodes grown on sapphire with an emission wavelength of 280 nm using an asymmetric single-quantum-well active layer configuration on top of a high-quality AlGaN/AlN template layer. An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm×300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)] |
2. | Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency F. Wang, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal] In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)] |
2. | QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL Y. Ma, R. Lewicki, M. Razeghi and F. Tittel Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal] An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)] |
2. | Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature Z. Vashaei, C. Bayram and M. Razeghi Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal] GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)] |
2. | Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal] We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)] |
2. | Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi Applied Physics Letters, 89 (11)-- September 11, 2006 ...[Visit Journal] The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. [reprint (PDF)] |
2. | Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering Y. Wei and M. Razeghi Physical Review B, 69 (8)-- February 15, 2004 ...[Visit Journal] We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. [reprint (PDF)] |
2. | Very Long Wavelength Infrared Type-II Detectors Operating at 80K H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, G.J. Brown, W.C. Mitchel, and Y.S. Park Applied Physics Letters 77 (11)-- September 11, 2000 ...[Visit Journal] We report a demonstration of very long wavelength infrared detectors based on InAs/GaSb superlattices operating at T = 80 K. Detector structures with excellent material quality were grown on an optimized GaSb buffer layer on GaAs semi-insulating substrates. Photoconductive devices with 50% cutoff wavelength of λc = 17 μm showed a peak responsivity of about 100 mA/W at T = 80 K. Devices with 50% cutoff wavelengths up to λc = 22 μm were demonstrated at this temperature. Good uniformity was obtained over large areas even for the devices with very long cutoff wavelengths. [reprint (PDF)] |
2. | Multi-color 4–20 μm In-P-based Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] In order to tune the wavelength of lattice-matched QWIP detectors over the range from 4 - 20 &mum, new designs are demonstrated for the first time which combine InGaAlAs and InGaAsP layers lattice-matched to InP and grown by gas-source molecular beam epitaxy. We demonstrate the first long-wavelength quantum well infrared photodetectors using the lattice-matched n-doped InGaAlAs/InP materials system. Samples with AlAs mole fractions of 0.0, 0.1, and 0.15 result in cutoff wavelengths of 8.5, 13.3, and 19.4 μm, respectively. A 45 degree facet coupled illumination responsivity of R equals 0.37 A/W and detectivity of D*(λ) equals 1x109 cm·Hz½·W-1 at T = 77 K, for a cutoff wavelength λc equals 13.3 μm have been achieved. Based on the measured intersubband photoresponse wavelength, a null conduction band offset is expected for In0.52Ga0.21Al0.27As/InP heterojunctions. We also report quantum well infrared photodetector structures of In0.53Ga0.47As/Al0.48In0.52As grown on InP substrate with photoresponse at 4 μm suitable for mid-wavelength infrared detectors. These detectors exhibit a constant peak responsivity of 30 mA/W independent of temperature in the range from T equals 77 K to T equals 200 K. Combining these two materials, we report the first multispectral detectors that combine lattice-matched quantum wells of InGaAs/InAlAs and InGaAs/InP. Utilizing two contacts, a voltage tunable detector with (lambda) p equals 8 micrometer at a bias of V equals 5 V and λp equals 4 μm at V equals 10 V is demonstrated. [reprint (PDF)] |
2. | Solar blind GaN p-i-n photodiodes D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi Applied Physics Letters 72 (25)-- June 22, 1998 ...[Visit Journal] We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011 Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. [reprint (PDF)] |
Page 18 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|