About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 16 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | New design strategies for multifunctional and inexpensive quantum cascade lasers Steven Slivken; Manijeh Razeghi Proc. SPIE 10926, Quantum Sensing and Nano Electronics and Photonics XVI, 1092611-- February 1, 2019 ...[Visit Journal] This manuscript describes some of the new advances in active mid-infrared photonic integrated circuits enabled by new quantum cascade laser technologies. This includes monolithic beam steering which was achieved via the integration of a widely tunable QCL and a tapered grating outcoupler. A record 17.9 degrees of steering with a low divergence beam (0.5 degrees) was achieved. In addition, the use of surface emitting architectures is proposed as a means to reduce the manufacturing cost of next-generation QCLs. A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. All of this is achieved while maintaining a high quality output beam, similar to a standard edge emitter. [reprint (PDF)] |
2. | High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal] We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)] |
2. | Microstructural compositional, and optical characterization of GaN grown by metal organic vapor phase epitaxy on ZnO epilayers D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, F. Jomard, M. Molinari, M. Troyon, D. McGrouther, J.N. Chapman, M. Razeghi and A. Ougazzaden Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1655-1657-- May 29, 2009 ...[Visit Journal] This article presents the results of microstructural, compositional, and optical characterization of GaN films grown on ZnO buffered c-sapphire substrates. Transmission electron microscopy showed epitaxy between the GaN and the ZnO, no degradation of the ZnO buffer layer, and no evidence of any interfacial compounds. Secondary ion mass spectroscopy revealed negligible Zn signal in the GaN layer away from the GaN/ZnO interface. After chemical removal of the ZnO, room temperature (RT) cathodoluminescence spectra had a single main peak centered at ~ 368 nm (~3.37 eV), which was indexed as near-band-edge (NBE) emission from the GaN layer. There was no evidence of the ZnO NBE peak, centered at ~379 nm (~3.28 eV), which had been observed in RT photoluminescence spectra prior to removal of the ZnO. [reprint (PDF)] |
2. | Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output Q.Y. Lu, Y. Bai, N. Bandyopadhyay, Sl Slivken, and M. Razeghi Applied Physics Letters, Vol. 97, No. 23, p. 231119-1-- December 6, 2010 ...[Visit Journal] We demonstrate surface-grating distributed feedback quantum cascade lasers (QCLs) with a watt-level power output at 4.75 μm. A device with a 5 mm cavity length exhibits an output power of 1.1 W in room-temperature cw operation. Single-mode operation with a side mode suppression ratio of 30 dB is obtained in the working temperature of 15–105 °C. A double-lobed far field with negligible beam steering is observed. The significance of this demonstration lies in its simplicity and readiness to be applied to standard QCL wafers with the promise of high-power performances. [reprint (PDF)] |
2. | Theoretical investigation of minority carrier leakage of high-power 0.8 μm InGaAsP/InGaP/GaAs laser diodes J. Diaz, I. Eliashevich, H.J. Yi, M. Stanton, and M. Razeghi Applied Physics Letters 65 (18)-- October 31, 1994 ...[Visit Journal] We report a theoretical model that accurately describes the effects of minority carrier leakage from the InGaAsP waveguide into InGaP cladding layers in high‐power aluminum-free 0.8 μm InGaAsP/InGaP/GaAs separate confinement heterostructure lasers. Current leakage due to the relatively low band‐gap discontinuity between the active region and the InGaP barrier can be eliminated by employing laser diodes with cavity length longer than 500 μm. Experimental results for lasers grown by low-pressure metalorganic chemical vapor deposition are in excellent agreement with the theoretical model. [reprint (PDF)] |
2. | Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal] Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with
different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)] |
2. | Tight-binding theory for the thermal evolution of optical band gaps in semiconductors and superlattices S. Abdollahi Pour, B. Movaghar, and M. Razeghi American Physical Review, Vol. 83, No. 11, p. 115331-1-- March 15, 2011 ...[Visit Journal] A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors and superlattices using an empirical tight-binding method has been developed. The approach follows closely established procedures and allows parameter variations which give rise to perfect fits to the experimental data. We also apply the tight-binding method to the far more complex problem of band structures in Type-II infrared superlattices for which we have access to original experimental data recently acquired by our group. Given the close packing of bands in small band-gap Type-II designs, k·p methods become difficult to handle, and it turns out that the sp3s* tight-binding scheme is a practical and powerful asset. Other approaches to band-gap shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term, the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory. [reprint (PDF)] |
2. | Graphene versus oxides for transparent electrode applications Sandana, V. E.; Rogers, D. J.; Teherani, F. Hosseini; Bove, P.; Razeghi, M. Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862603 (March 18, 2013)-- March 18, 2013 ...[Visit Journal] Due to their combination of good electrical conductivity and optical transparency, Transparent Conducting Oxides (TCOs) are the most common choice as transparent electrodes for optoelectronics applications. In particular, devices, such as LEDs, LCDs, touch screens and solar cells typically employ indium tin oxide. However, indium has some significant drawbacks, including toxicity issues (which are hampering manufacturing), an increasing rarefication (due to a combination of relative scarcity and increasing demand [1]) and resulting price increases. Moreover, there is no satisfactory option at the moment for use as a p-type transparent contact. Thus alternative materials solutions are actively being sought. This review will compare the performance and perspectives of graphene with respect to TCOs for use in transparent conductor applications. [reprint (PDF)] |
2. | Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)] |
2. | Recent advances in high power mid- and far-wavelength infrared lasers for free space communication S. Slivken and M. Razeghi SPIE Optics East Conference, October 1-4, 2006, Boston, MA Proceedings – Active and Passive Optical Components for Communications VI, Vol. 6389, p. 63890S-1-- October 4, 2006 ...[Visit Journal] Link reliability is a significant issue for free space optical links. Inclement weather, such as fog, can seriously reduce the transmission of light through the atmosphere. However, this effect, for some types of fog, is wavelength-dependent. In order to improve link availability in both metro and hostile environments, mid- and far-wavelength infrared diode lasers can be of use. This paper will discuss some of the recent advances in high-power, uncooled quantum cascade lasers and their potential for use in long range and/or highly reliable free space communication links. [reprint (PDF)] |
2. | Electroluminescence of InAs/GaSb heterodiodes D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal] The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)] |
2. | High Performance Quantum Cascade Lasers at λ ~ 6 μm M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal] This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)] |
2. | High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates J. Jiang, C. Jelen, M. Razeghi and G.J. Brown IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal] In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)] |
2. | Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides D.N. Hahn, G.T. Kiehne, G.K.L. Wong, J.B. Ketterson, P. Kung, A. Saxler and M. Razeghi Journal of Applied Physics 85 (5)-- March 1, 1999 ...[Visit Journal] Phase-matched optical second-harmonic (SH) generation was observed in GaN and AlN slab waveguides. Phase matching was achieved by waveguide modal dispersion. By tuning the output wavelength of an optical parametric amplifier, several phased-matched SH peaks were observed in the visible spectrum covering blue to red wavelengths. The peak positions are in agreement with the values calculated using the dispersive refractive indices of the film and substrate materials. [reprint (PDF)] |
2. | Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detector S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen and M. Razeghi Applied Physics Letters 73 (7)-- August 17, 1998 ...[Visit Journal] We report InGaAs quantum dot intersubband infrared photodetectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The optimum growth conditions were studied to obtain uniform InGaAs quantum dots constructed in an InGaP matrix. Normal incidence photoconductivity was observed at a peak wavelength of 5.5 μm with a high responsivity of 130 mA/W and a detectivity of 4.74×107 cm· Hz½/W at 77 K. [reprint (PDF)] |
2. | Second harmonic generation in hexagonal silicon carbide P.M. Lundquist, W.P. Lin, G.K. Wong, M. Razeghi, and J.B. Ketterson Applied Physics Letters 66 (15)-- April 10, 1995 ...[Visit Journal] We report optical second harmonic generation measurements in single crystal α-SiC of polytype 6H. The angular dependence of second harmonic intensity was consistent with two independent nonvanishing second order susceptibility components, as expected for a crystal with hexagonal symmetry. For the fundamental wavelength of 1.064 μm the magnitudes of the two components were determined to be χzzz(2)=±1.2×10−7 and χzxx(2)=∓1.2×10−8 esu. The corresponding linear electro‐optic coefficient computed from this value is rzzz=±100 pm/V. The wavelength dependence of the nonlinear susceptibility was examined for second harmonic wavelengths between the bandgap (400 nm) and the red (700 nm), and was found to be relatively uniform over this region. The refractory nature of this compound and its large nonlinear optical coefficients make it an attractive candidate for high power nonlinear optical waveguide applications. [reprint (PDF)] |
2. | High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal] Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)] |
2. | High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow Applied Physics Letters, 84 (12)-- April 22, 2004 ...[Visit Journal] We report a high detectivity middle-wavelength infrared quantum dot infrared photodetector (QDIP). The InGaAs quantum dots were grown by self-assembly on an InGaP matrix via low pressure metalorganic chemical vapor deposition. Photoresponse was observed at temperatures above 200 K with a peak wavelength of 4.7 µm and cutoff wavelength of 5.2 µm. The background limited performance temperature was 140 K, and this was attributed to the super low dark current observed in this QDIP. A detectivity of 3.6×1010 cm·Hz½/W, which is comparable to the state-of-the-art quantum well infrared photodetectors in a similar wavelength range, was obtained for this InGaAs/InGaP QDIP at both T = 77 K and T = 95 K at biases of –1.6 and –1.4 V, [reprint (PDF)] |
2. | Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi Appl. Phys. Lett. 103, 011101 (2013)-- July 1, 2013 ...[Visit Journal] We report room temperature terahertz (THz) quantum cascade laser sources with high power based on difference frequency generation. The device is Čerenkov phase matched and spectrally purified with an integrated dual-period distributed-feedback grating. Symmetric current injection and epilayer-down mounting of the device onto a patterned submount are used to improve the electrical uniformity and heat removal, respectively. The epilayer-down mounting also allows for THz anti-reflective coating to enhance the THz outcoupling efficiency. Single mode emission at 3.5 THz with a side-mode suppression ratio and output power up to 30 dB and 215 μW are obtained, respectively. [reprint (PDF)] |
2. | Continuous operation of a monolithic semiconductor terahertz source at room temperature Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi Appl. Phys. Lett. 104, 221105 (2014)-- June 3, 2014 ...[Visit Journal] We demonstrate room temperature continuous wave THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Buried ridge, buried composite distributed-feedback waveguide with Čerenkov phase-matching scheme is used to reduce the waveguide loss and enhance the heat dissipation for continuous wave operation. Continuous emission at 3.6 THz with a side-mode suppression ratio of 20 dB and output power up to 3 μW are achieved, respectively. THz peak power is further scaled up to 1.4 mW in pulsed mode by increasing the mid-infrared power through increasing the active region doping and device area. [reprint (PDF)] |
2. | Current status and potential of high power mid-infrared intersubband lasers S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal] Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)] |
2. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)] |
2. | Room-temperature, high-power and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm S.R. Darvish, S. Slivken, A. Evans, J.S. Yu, and M. Razeghi Applied Physics Letters, 88 (20)-- May 15, 2006 ...[Visit Journal] High-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers is reported. Continuous-wave output powers of 100 mW at 25 °C and 20 mW at 50 °C are obtained. The device exhibits a cw threshold current density of 1.34 kA/cm2, a maximum cw wall-plug efficiency of 1% at 25 °C, and a characteristic temperature of ~190 K in pulsed mode. Single-mode emission near 9.6 μm with a side-mode suppression ratio of ≥ 30 dB and a tuning range of 2.89 cm–1 from 15 to 50 °C is obtained. [reprint (PDF)] |
2. | Dark current reduction in microjunction-based compound electron barrier type-II InAs/InAs1-xSbx superlattice-based long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV Page. 1054007-1-- January 26, 2018 ...[Visit Journal] Reduction of dark current density in microjunction-based InAs/InAs1-xSbx type-II superlattice long-wavelength infrared photodetectors was demonstrated. A double electron barrier design was used to suppress both generation-recombination and
surface dark currents. The photodetectors exhibited high surface resistivity after passivation with SiO2, which permits the use of small size features without having strong surface leakage current degrading the electrical performance. Fabricating a
microjunction structure (25×25 μm² mesas with 10×10 μm² microjunctions) with this photodetector double barrier design results in a dark current density of 6.3×10-6 A/cm² at 77 K. The device has an 8 μm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 μm-thick absorption region, which results in a specific detectivity value of 1.2×1012 cm·Hz1/2/W at 77 K. [reprint (PDF)] |
2. | Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, and M. Razeghi Applied Physics Letters, Vol. 96, No. 26, p. 261107 (2010);-- June 28, 2010 ...[Visit Journal] GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10−4 A/cm² whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10−6 A/cm². Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625 μm² area APD yielded a SPDE of 13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to 30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate. [reprint (PDF)] |
Page 16 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|