About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 15 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Phys. Status Solidi A, pp. 1–6-- September 30, 2016 ...[Visit Journal] AlN layers have been grown on 200 nm period of nanopatterned Si (111) substrates by cantilever epitaxy and compared with AlN layers grown by maskless lateral epitaxial overgrowth (LEO) on micropatterned Si (111) substrates. The material quality of 5–10 µm thick AlN grown by LEO is comparable to that of much thinner layers (2 µm) grown by cantilever epitaxy on the nanopatterned substrates. Indeed, the latter exhibited root mean square (RMS) roughness of 0.65 nm and X-ray diffraction full width at half-maximum (FWHM) of 710 arcsec along the (0002) reflection and 930 arcsec along the (10̅15) reflection. The corresponding room temperature photoluminescence spectra was dominated by a sharp band edge peak. Back emission ultra violet light emitting diodes (UV LEDs) were fabricated by flip chip bonding to patterned AlN heat sinks followed by complete Si (111) substrate removal demonstrating a peak pulsed power of ∼0.7 mW at 344 nm peak emission wavelength. The demonstrated UV LEDs were fabricated on a cost effective epitaxial structure grown on the nanopatterned Si substrate with a total thickness of 3.3 µm [reprint (PDF)] |
2. | Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, and M. Razeghi Applied Physics Letters, Vol. 96, No. 26, p. 261107 (2010);-- June 28, 2010 ...[Visit Journal] GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10−4 A/cm² whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10−6 A/cm². Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625 μm² area APD yielded a SPDE of 13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to 30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate. [reprint (PDF)] |
2. | Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi Applied Physics Letters, Vol. 93, No. 12, p. 123502-1-- September 22, 2008 ...[Visit Journal] The utilization of the P+-pi-M-N+ photodiode architecture in conjunction with a thick active region can significantly improve long wavelength infrared Type-II InAs/GaSb superlattice photodiodes. By studying the effect of the depletion region placement on the quantum efficiency in a thick structure, we achieved a topside illuminated quantum efficiency of 50% for an N-on-P diode at 8.0 µm at 77 K. Both the double heterostructure design and the application of polyimide passivation greatly reduce the surface leakage, giving an R0A of 416 Ω·cm2 for a 1% cutoff wavelength of 10.52 µm, a Shot–Johnson detectivity of 8.1×1011 cm·Hz½/W at 77 K, and a background limited operating temperature of 110 K with 300 K background. [reprint (PDF)] |
2. | Recent advances in high power mid- and far-wavelength infrared lasers for free space communication S. Slivken and M. Razeghi SPIE Optics East Conference, October 1-4, 2006, Boston, MA Proceedings – Active and Passive Optical Components for Communications VI, Vol. 6389, p. 63890S-1-- October 4, 2006 ...[Visit Journal] Link reliability is a significant issue for free space optical links. Inclement weather, such as fog, can seriously reduce the transmission of light through the atmosphere. However, this effect, for some types of fog, is wavelength-dependent. In order to improve link availability in both metro and hostile environments, mid- and far-wavelength infrared diode lasers can be of use. This paper will discuss some of the recent advances in high-power, uncooled quantum cascade lasers and their potential for use in long range and/or highly reliable free space communication links. [reprint (PDF)] |
2. | Electroluminescence of InAs/GaSb heterodiodes D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal] The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)] |
2. | High Performance Quantum Cascade Lasers at λ ~ 6 μm M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal] This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)] |
2. | High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates J. Jiang, C. Jelen, M. Razeghi and G.J. Brown IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal] In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)] |
2. | Phase-matched optical second-harmonic generation in GaN and AlN slab waveguides D.N. Hahn, G.T. Kiehne, G.K.L. Wong, J.B. Ketterson, P. Kung, A. Saxler and M. Razeghi Journal of Applied Physics 85 (5)-- March 1, 1999 ...[Visit Journal] Phase-matched optical second-harmonic (SH) generation was observed in GaN and AlN slab waveguides. Phase matching was achieved by waveguide modal dispersion. By tuning the output wavelength of an optical parametric amplifier, several phased-matched SH peaks were observed in the visible spectrum covering blue to red wavelengths. The peak positions are in agreement with the values calculated using the dispersive refractive indices of the film and substrate materials. [reprint (PDF)] |
2. | Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detector S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen and M. Razeghi Applied Physics Letters 73 (7)-- August 17, 1998 ...[Visit Journal] We report InGaAs quantum dot intersubband infrared photodetectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The optimum growth conditions were studied to obtain uniform InGaAs quantum dots constructed in an InGaP matrix. Normal incidence photoconductivity was observed at a peak wavelength of 5.5 μm with a high responsivity of 130 mA/W and a detectivity of 4.74×107 cm· Hz½/W at 77 K. [reprint (PDF)] |
2. | Second harmonic generation in hexagonal silicon carbide P.M. Lundquist, W.P. Lin, G.K. Wong, M. Razeghi, and J.B. Ketterson Applied Physics Letters 66 (15)-- April 10, 1995 ...[Visit Journal] We report optical second harmonic generation measurements in single crystal α-SiC of polytype 6H. The angular dependence of second harmonic intensity was consistent with two independent nonvanishing second order susceptibility components, as expected for a crystal with hexagonal symmetry. For the fundamental wavelength of 1.064 μm the magnitudes of the two components were determined to be χzzz(2)=±1.2×10−7 and χzxx(2)=∓1.2×10−8 esu. The corresponding linear electro‐optic coefficient computed from this value is rzzz=±100 pm/V. The wavelength dependence of the nonlinear susceptibility was examined for second harmonic wavelengths between the bandgap (400 nm) and the red (700 nm), and was found to be relatively uniform over this region. The refractory nature of this compound and its large nonlinear optical coefficients make it an attractive candidate for high power nonlinear optical waveguide applications. [reprint (PDF)] |
2. | Recent performance records for mid-IR quantum cascade lasers M. Razeghi; Y. Bai; S. Slivken; S. Kuboya; S.R. Darvish Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications, 2009. TERA-MIR International Workshop [5379656], (2009) -- November 9, 2009 ...[Visit Journal] The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave operation is brought to 17%. Peak output power from a broad area (400 μm x 3 mm) device gives 120 W output power in pulsed mode operation at room temperature. Using a single-well-injector design, specifically made for low temperature operation, a record wall plug efficiency of 53% is demonstrated at 40 K. [reprint (PDF)] |
2. | Avalanche multiplication in AlGaN based solar-blind photodetectors R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi Applied Physics Letters, 87 (24)-- December 12, 2005 ...[Visit Journal] Avalanche multiplication has been observed in solar-blind AlGaN-based p-i-n photodiodes. Upon ultraviolet illumination, the optical gain shows a soft breakdown starting at relatively low electric fields, eventually saturating without showing a Geiger mode breakdown. The devices achieve a maximum optical gain of 700 at a reverse bias of 60 V. By modeling the device, it is found that this corresponds to an electric-field strength of 1.7 MV/cm. [reprint (PDF)] |
2. | AlxGa1-xN (0 ≤ x ≤ 1) Ultraviolet Photodetectors Grown on Sapphire by Metal-organic Chemical-vapor Deposition D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi Applied Physics Letters 70 (8)-- February 24, 1997 ...[Visit Journal] AlxGa1–xN (0 ≤ x ≤ 1) ultraviolet photoconductors with cutoff wavelengths from 365 to 200 nm have been fabricated and characterized. The maximum detectivity reached 5.5 × 108 cm·Hz1/2/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1–xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 ms. The frequency-dependent noise spectrum shows that it is dominated by Johnson noise at high frequencies for low-Al-composition samples. [reprint (PDF)] |
2. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
2. | High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, and M. Razeghi Applied Physics Letters 74 (5)-- February 1, 1999 ...[Visit Journal] We present the fabrication and characterization of nonintentionally doped GaN and GaN:Mg Schottky metal–semiconductor–metal (MSM) photodetectors, grown on sapphire by metalorganic chemical vapor deposition. Low-leakage, Schottky contacts were made with Pt/Au. The devices are visible blind, with an ultraviolet/green contrast of about five orders of magnitude. The response times of the MSM devices were <10 ns and about 200 ns for GaN and GaN:Mg, respectively. The noise power spectral density remains below the background level of the system (10−24 A²/Hz) up to 5 V, for the undoped GaN MSM detector. [reprint (PDF)] |
2. | High Power 0.98 μm GaInAs/GaAs/GaInP Multiple Quantum Well Laser K. Mobarhan, M. Razeghi, G. Marquebielle and E. Vassilaki Journal of Applied Physics 72 (9)-- November 1, 1992 ...[Visit Journal] We report the fabrication of high quality Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser emitting at 0.98 μm grown by low pressure metalorganic chemical vapor deposition. Continuous wave operation with output power of 500 mW per facet was achieved at room temperature for a broad area laser with 130 μm width and 300 μm cavity length. This is an unusually high value of output power for this wavelength laser in this material system. The differential quantum efficiency exceeded 75% with excellent homogeneity and uniformity. The characteristic temperature, T0 was in the range of 120–130 K. [reprint (PDF)] |
2. | Optimized structure for InGaAsP/GaAs 808nm high power lasers H. Yi, J. Diaz, L.J. Wang, I. Eliashevich, S. Kim, R. Williams, M. Erdtmann, X. He, E. Kolev and M. Razeghi Applied Physics Letters 66 (24)-- June 12, 1995 ...[Visit Journal] The optimized structure for the InGaAsP/GaAs quaternary material lasers (λ=0.808 μm) is investigated for the most efficient high‐power operation through an experiment and theoretical study. A comparative study is performed of threshold current density Jth and differential efficiency ηd dependence on cavity length (L) for two different laser structures with different active layer thickness (150 and 300 Å) as well as for laser structures with different multiple quantum well structures. A theoretical model with a more accurate formulation for minority leakage phenomenon provides explanation for the experimental results and sets general optimization rules for other lasers with similar restrictions on the band gap and refractive index difference between the active layer and the cladding layers. [reprint (PDF)] |
2. | Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal] A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5 A/cm2 providing a specific detectivity of ∼2×1011 cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10 mV, the device’s dark current density was 5.5×10−8 A/cm2. At zero bias, its specific detectivity was 1×1011 cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2 V bias voltage, the device exhibited a dark current density of 1.8×10−6 A/cm2 providing a specific detectivity of 6.3×1011 cm·Hz1/2/W at 150K. [reprint (PDF)] |
2. | RT-CW: widely tunable semiconductor THz QCL sources M. Razeghi; Q. Y. Lu Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications -- September 26, 2016 ...[Visit Journal] Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)] |
2. | Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015 ...[Visit Journal] (In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN
peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related
visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. [reprint (PDF)] |
2. | High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal] Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this
multi-spectral detection.
In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage,
resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)] |
2. | GaN avalanche photodiodes grown on m-plane freestanding GaN substrate Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010 ...[Visit Journal] M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. [reprint (PDF)] |
2. | Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes E.K. Huang, D. Hoffman, B.M. Nguyen, P.Y. Delaunay and M. Razeghi Applied Physics Letters, Vol. 94, No. 5, p. 053506-1-- February 2, 2009 ...[Visit Journal] Inductively coupled plasma (ICP) dry etching rendered structural and electrical enhancements on type-II antimonide-based superlattices compared to those delineated by electron cyclotron resonance (ECR) with a regenerative chemical wet etch. The surface resistivity of 4×105 Ω·cm is evidence of the surface quality achieved with ICP etching and polyimide passivation. By only modifying the etching technique in the fabrication steps, the ICP-etched devices with a 9.3 µm cutoff wavelength revealed a diffusion-limited dark current density of 4.1×10−6 A/cm2 and a maximum differential resistance at zero bias in excess of 5300 Ω·cm2 at 77 K, which are an order of magnitude better in comparison to the ECR-etched devices. [reprint (PDF)] |
2. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
2. | Type-II InAs/GaSb Superlattices and Detectors with Cutoff Wavelength Greater Than 18 μm M. Razeghi, Y. Wei, A. Gin, G.J. Brown and D. Johnstone Proceedings of the SPIE, San Jose, CA, Vol. 4650, 111 (2002)-- January 25, 2002 ...[Visit Journal] The authors report the most recent advances in Type-II InAs/GaSb superlattice materials and photovoltaic detectors. Lattice mismatch between the substrate and the superlattice has been routinely achieved below 0.1%, and less than 0.0043% as the record. The FWHM of the zeroth order peak from x-ray diffraction has been decreased below 50 arcsec and a record of less than 44arcsec has been achieved. High performance detectors with 50% cutoff beyond 18 micrometers up to 26 micrometers have been successfully demonstrated. The detectors with a 50% cut-off wavelength of 18.8 micrometers showed a peak current responsivity of 4 A/W at 80K, and a peak detectivity of 4.510 cm·Hz½·W-1 was achieved at 80K at a reverse bias of 110 mV under 300 K 2(pi) FOV background. Some detectors showed a projected 0% cutoff wavelength up to 28~30 micrometers . The peak responsivity of 3Amp/Watt and detectivity of 4.2510 cm·Hz½·W-1 was achieved under -40mV reverse bias at 34K for these detectors. [reprint (PDF)] |
Page 15 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|