Page 15 of 18:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18  >> Next  (447 Items)

1.  Noise analysis in Type-II InAs/GaSb Focal Plane Arrays
P.Y. Delaunay and M. Razeghi
Virtual Journal of Nanoscale Science and Technology, Vol. 20, No. 14-- October 5, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Widely tunable room temperature semiconductor terahertz source
Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 105, 201102-- November 17, 2014 ...[Visit Journal]
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing. [reprint (PDF)]
 
1.  Dark current reduction in microjunction-based compound electron barrier type-II InAs/InAs1-xSbx superlattice-based long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV Page. 1054007-1-- January 26, 2018 ...[Visit Journal]
Reduction of dark current density in microjunction-based InAs/InAs1-xSbx type-II superlattice long-wavelength infrared photodetectors was demonstrated. A double electron barrier design was used to suppress both generation-recombination and surface dark currents. The photodetectors exhibited high surface resistivity after passivation with SiO2, which permits the use of small size features without having strong surface leakage current degrading the electrical performance. Fabricating a microjunction structure (25×25 μm² mesas with 10×10 μm² microjunctions) with this photodetector double barrier design results in a dark current density of 6.3×10-6 A/cm² at 77 K. The device has an 8 μm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 μm-thick absorption region, which results in a specific detectivity value of 1.2×1012 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
1.  RT-CW: widely tunable semiconductor THz QCL sources
M. Razeghi; Q. Y. Lu
Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications -- September 26, 2016 ...[Visit Journal]
Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)]
 
1.  High power, continuous wave, quantum cascade ring laser
Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, D. Caffey, M. Pushkarsky, T. Day and M. Razeghi
Applied Physics Letters, Vol. 99, No. 26, p. 261104-1-- December 26, 2011 ...[Visit Journal]
We demonstrate a quantum cascade ring laser with high power room temperature continuous wave operation. A second order distributed feedback grating buried inside the waveguide provides both in-plane feedback and vertical power outcoupling. Total output power reaches 0.51 W at an emission wavelength around 4.85 μm. Single mode operation persists up to 0.4 W. The far field analysis indicates that the device operates in a high order mode. The magnetic and electric components of the ring-shaped lasing beam are in radial and azimuthal directions, respectively. [reprint (PDF)]
 
1.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 
1.  Noise analysis in type-II InAs/GaSb focal plane arrays
P.Y. Delaunay and M. Razeghi
Journal of Applied Physics, Vol. 106, Issue 6, p. 063110-- September 15, 2009 ...[Visit Journal]
A long wavelength infrared focal plane array based on type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference in the array was measured as low as 23 mK for an integration time of 0.129 ms. The noise behavior of the detectors was properly described by a model based on thermal, shot, read out integrated circuit, and photon noises. The noise of the imager was dominated by photon noise for photon fluxes higher than 1.8×1015 ph·s−1·cm−2. At lower irradiance, the imager was limited by the shot noise generated by the dark current or the noise of the testing system. The superlattice detector did not create 1/f noise for frequencies above 4 mHz. As a result, the focal plane array did not require frequent calibrations. [reprint (PDF)]
 
1.  Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi
Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017 ...[Visit Journal]
We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. [reprint (PDF)]
 
1.  Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers
Manijeh Razeghi Wenjia Zhou Ryan McClintock Donghai Wu Steven Slivken
Optical Engineering 57(1), 011018-- December 1, 2017 ...[Visit Journal]
We present recent progress on the development of monolithic, broadband, widely tunable midinfrared quantum cascade lasers. First, we show a broadband midinfrared laser gain realized by a heterogeneous quantum cascade laser based on a strain balanced composite well design of Al0.63In0.37As∕Ga0.35In0.65As∕ Ga0.47In0.53As. Single mode emission between 5.9 and 10.9 μm under pulsed mode operation was realized from a distributed feedback laser array, which exhibited a flat current threshold across the spectral range. Using the broadband wafer, a monolithic tuning between 6.2 and 9.1 μm was demonstrated from a beam combined sampled grating distributed feedback laser array. The tunable laser was utilized for a fast sensing of methane under pulsed operation. Transmission spectra were obtained without any moving parts, which showed excellent agreement to a standard measurement made by a Fourier transform infrared spectrometer. [reprint (PDF)]
 
1.  Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer
Akhil Rajan, David J Rogers, Cuong Ton-That, Liangchen Zhu, Matthew R Phillips, Suresh Sundaram, Simon Gautier, Tarik Moudakir, Youssef El-Gmili, Abdallah Ougazzaden, Vinod E Sandana, Ferechteh H Teherani, Philippe Bove, Kevin A Prior, Zakaria Djebbour, Ryan McClintock and Manijeh Razeghi
Journal of Physics D: Applied Physics, Volume 49, Number 31 -- July 15, 2016 ...[Visit Journal]
Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling. [reprint (PDF)]
 
1.  Recent advances of terahertz quantum cascade lasers
Manijeh Razeghi
Proc. SPIE 8119, Terahertz Emitters, Receivers, and Applications II, 81190D (September 07, 2011)-- November 7, 2011 ...[Visit Journal]
In the past decade, tremendous development has been made in GaAs/AlGaAs based THz quantum cascade laser (QCLs), however, the maximum operating temperature is still limited below 200 K (without magnetic field). THz QCL based on difference frequency generation (DFG) represents a viable technology for room temperature operation. Recently, we have demonstrated room temperature THz emission (∼ 4 THz) up to 8.5 μW with a power conversion efficiency of 10 μW/W². A dual-period distributed feedback grating is used to filter the mid-infrared spectra in favor of an extremely narrow THz linewidth of 6.6 GHz. [reprint (PDF)]
 
1.  Reliability in room-temperature negative differential resistance characteristics of low-aluminum contact AlGaN/GaN double-barrier resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 18, p. 181109-1-- November 1, 2010 ...[Visit Journal]
AlGaN/GaN resonant tunneling diodes (RTDs), consisting of 20% (10%) aluminum-content in double-barrier (DB) active layer, were grown by metal-organic chemical vapor deposition on freestanding polar (c-plane) and nonpolar (m-plane) GaN substrates. RTDs were fabricated into 35-μm-diameter devices for electrical characterization. Lower aluminum content in the DB active layer and minimization of dislocations and polarization fields increased the reliability and reproducibility of room-temperature negative differential resistance (NDR). Polar RTDs showed decaying NDR behavior, whereas nonpolar ones did not significantly. Averaging over 50 measurements, nonpolar RTDs demonstrated a NDR of 67 Ω, a current-peak-to-valley ratio of 1.08, and an average oscillator output power of 0.52 mW. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal]
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)]
 
1.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
Manijeh Razeghi
Journal of Vacuum Volume 146, Pages 308-328-- December 1, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
1.  Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices
A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi
Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal]
A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)]
 
1.  High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures
P.Y. Delaunay and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008 ...[Visit Journal]
Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%. [reprint (PDF)]
 
1.  Use of PLD-grown moth-eye ZnO nanostructures as templates for MOVPE growth of InGaN-based photovoltaics
Dave Rogers, V. E. Sandana, F. Hosseini Teherani, S. Gautier, G. Orsal, T. Moudakir, M. Molinari, M. Troyon, M. Peres, M. J. Soares, A. J. Neves, T. Monteiro, D. McGrouther, J. N. Chapman, H. J. Drouhin, M. Razeghi, and A. Ougazzaden
Renewable Energy and the Environment, OSA Technical Digest paper PWB3, Optical Society of America, (2011)-- November 2, 2011 ...[Visit Journal]
At this time, no abstract is available. Scopus has content delivery agreements in place with each publisher and currently contains 30 million records with an abstract. An abstract may not be present due to incomplete data, as supplied by the publisher, or is still in the process of being indexed. [reprint (PDF)]
 
1.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
1.  Stranski-Krastanov growth of InGaN quantum dots emitting in green spectra
C. Bayram and M. Razeghi
Applied Physics A: Materials Science and Processing, Vol. 96, No. 2, p. 403-408-- August 1, 2009 ...[Visit Journal]
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. [reprint (PDF)]
 
1.  Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal]
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)]
 
1.  RT-CW: widely tunable semiconductor THz QCL sources
M. Razeghi; Q. Y. Lu
Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications, 993406-1-- September 26, 2017 ...[Visit Journal]
Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)]
 
1.  Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation
Quanyong Lu and Manijeh Razeghi
Photonics, 3, 42-- July 7, 2016 ...[Visit Journal]
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications. [reprint (PDF)]
 
1.  Growth of “moth-eye” ZnO nanostructures on Si(111), c-Al2O3, ZnO and steel substrates by pulsed laser deposition
Vinod E. Sandana, David J. Rogers, Ferechteh Hosseini Teherani, Philippe Bove, Michael Molinari, Michel Troyon, Alain Largeteau, Gérard Demazeau, Colin Scott, Gaelle Orsal, Henri-Jean Drouhin, Abdallah Ougazzaden, Manijeh Razeghi
Phys. Status Solidi C., 1-5 (2013)-- August 6, 2013 ...[Visit Journal]
Self-forming, vertically-aligned, arrays of black-body-like ZnO moth-eye nanostructures were grown on Si(111), c-Al2O3, ZnO and high manganese austenitic steel substrates using Pulsed Laser Deposition. X-ray diffraction (XRD) revealed the nanostructures to be well-crystallised wurtzite ZnO with strong preferential c-axis crystallographic orientation along the growth direction for all the substrates. Cathodoluminescence (CL) studies revealed emission characteristic of the ZnO near band edge for all substrates. Such moth-eye nanostructures have a graded effective refractive index and exhibit black-body characteristics. Coatings with these features may offer improvements in photovoltaic and LED performance. Moreover, since ZnO nanostructures can be grown readily on a wide range of substrates it is suggested that such an approach could facilitate growth of GaN-based devices on mismatched and/or technologically important substrates, which may have been inaccessible till present. [reprint (PDF)]
 
1.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 

Page 15 of 18:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18  >> Next  (447 Items)