About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 15 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Low pressure metalorganic chemical vapor deposition of high quality AlN and GaN thin films on sapphire and silicon substrates P. Kung, X. Zhang, E. Bigan, and M. Razeghi Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal] High quality AlN and GaN epilayers have been grown on basal plane sapphire by low pressure metalorganic chemical vapor deposition. The X-ray rocking curve linewidth of the AlN and GaN films were about 100 and 30 arcsecs respectively. Sharp absorption edges were determined at 6.1 and 3.4 eV respectively. Successful donor-bound excitonic luminescence emissions were detected for GaN films grown on sapphire and silicon. Two additional lines at 3.37 and 3.31 eV were observed on GaN on sapphire and assumed to be impurity-related. Doping of GaN layers was achieved with magnesium. Mg-related photoluminescence emissions were successfully detected on as-grown samples, without any post-growth treatment. [reprint (PDF)] |
2. | Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition Omnes F., and Razeghi M. Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal] Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)] |
2. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Applied Physics Letters, 84 (13)-- April 29, 2004 ...[Visit Journal] We report a demonstration of an infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. The middle-wavelength infrared quantum-dot infrared photodetector (QDIP) structure was grown via low-pressure metal organic chemical vapor deposition. A detectivity of 3.6×1010 cm·Hz½/W was achieved at T = 95 K and a bias of –1.4 V. The background limited temperature of our QDIP was 140 K with a 45° field of view. A 256×256 detector array was fabricated with dry etching, and hybridized to a Litton readout chip by indium bumps. Thermal imaging was achieved at temperatures up to 120 K. At T = 77 K, the noise equivalent temperature difference was measured as 0.509 K with a 300 K background and f/2.3 optics. [reprint (PDF)] |
2. | Avalanche multiplication in AlGaN based solar-blind photodetectors R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi Applied Physics Letters, 87 (24)-- December 12, 2005 ...[Visit Journal] Avalanche multiplication has been observed in solar-blind AlGaN-based p-i-n photodiodes. Upon ultraviolet illumination, the optical gain shows a soft breakdown starting at relatively low electric fields, eventually saturating without showing a Geiger mode breakdown. The devices achieve a maximum optical gain of 700 at a reverse bias of 60 V. By modeling the device, it is found that this corresponds to an electric-field strength of 1.7 MV/cm. [reprint (PDF)] |
2. | Effects of well width and growth temperature on optical and structural characteristics of AlN/GaN superlattices grown by metal-organic chemical vapor deposition C. Bayram, N. Pere-Laperne, and M. Razeghi Applied Physics Letters, Vol. 95, No. 20, p. 201906-1-- November 16, 2009 ...[Visit Journal] AlN/GaN superlattices (SLs) employing various well widths (from 1.5 to 7.0 nm) are grown by metal-organic chemical vapor deposition technique at various growth temperatures (Ts) (from 900 to 1035 °C). The photoluminescence (PL), x-ray diffraction, and intersubband (ISB) absorption characteristics of these SLs and their dependency on well width and growth temperature are investigated. Superlattices with thinner wells (grown at the same Ts) or grown at lower Ts (employing the same well width) are shown to demonstrate higher strain effects leading to a higher PL energy and ISB absorption energy. Simulations are employed to explain the experimental observations. ISB absorptions from 1.04 to 2.15 µm are demonstrated via controlling well width and growth temperature. [reprint (PDF)] |
2. | Superlattice sees colder objects in two colors and high resolution M. Razeghi SPIE Newsroom-- February 10, 2012 ...[Visit Journal] A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)] |
2. | Very high wall plug efficiency of quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010 ...[Visit Journal] We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. [reprint (PDF)] |
2. | AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89% E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi Appl. Phys. Lett. 103, 191108 (2013)-- November 5, 2013 ...[Visit Journal] We report on high performance AlxGa1−xN-based solar-blind ultraviolet photodetector (PD) array grown on sapphire substrate. First, high quality, crack-free AlN template layer is grown via metalorganic chemical vapor deposition. Then, we systematically optimized the device design and material doping through the growth and processing of multiple devices. After optimization, uniform and solar-blind operation is observed throughout the array; at the peak detection wavelength of 275 nm, 729 μm² area PD showed unbiased peak external quantum efficiency and responsivity of ∼80% and ∼176 mA/W, respectively, increasing to 89% under 5 V of reverse bias. Taking the reflection loses into consideration, the internal quantum efficiency of these optimized PD can be estimated to be as high as ∼98%. The visible rejection ratio measured to be more than six orders of magnitude. Electrical measurements yielded a low-dark current density: <2 × 10−9 A/cm², at 10 V of reverse bias. [reprint (PDF)] |
2. | High performance monolithic, broadly tunable mid-infrared quantum cascade lasers WENJIA Zhou, DONGHAI Wu, RYAN McCLINTOCK, STEVEN SLIVKEN, AND MANIJEH RAZEGH1 Optica 4(10), p. 1228-- October 10, 2017 ...[Visit Journal] Mid-infrared lasers, emitting in the spectral region of 3-12 µm that contains strong characteristic vibrational transitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applications still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a monolithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 µm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broadband antireflection coating. Nearly fundamental transversemode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1 °). The demonstrated laser source opens new opportunities for mid-infrared spectroscopy. [reprint (PDF)] |
2. | Room temperature quantum cascade lasers with 27% wall plug efficiency Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal] Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)] |
2. | Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8 ...[Visit Journal] In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode
(SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb
H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. [reprint (PDF)] |
2. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
2. | Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors Ryan McClintock ; Manijeh Razeghi Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015 ...[Visit Journal] AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress.
In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. [reprint (PDF)] |
2. | Tl incorporation in InSb and lattice contraction of In1-xTlxSb J.J. Lee and M. Razeghi Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal] Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)] |
2. | Long Wavelength Type-II Photodiodes Operating at Room Temperature H. Mohseni and M. Razeghi IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
2. | Schottky MSM Photodetectors on GaN Films Grown on Sapphire by Lateral Epitaxial Overgrowth P. Kung, D. Walker, P. Sandvik, M. Hamilton, J. Diaz, I.H. Lee and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the growth and characterization of Schottky based metal-semiconductor-metal ultraviolet photodetectors fabricated on lateral epitaxially overgrown GaN films. The lateral epitaxial overgrowth of GaN was carried out on basal plane sapphire substrates by low pressure metalorganic chemical vapor deposition and exhibited lateral growth rates more than 5 times as high as vertical growth rates. The spectral responsivity, the dependence on bias voltage, on incident optical power, and the time response of these photodetectors have been characterized. Two detector orientations were investigated: one with the interdigitated finger pattern parallel and the other perpendicular to the underlying SiOx mask stripes. [reprint (PDF)] |
2. |
-- November 30, 1999 |
2. | Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal] An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)] |
2. | Very Long Wavelength GaAs/GaInP Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal] We demonstrate long wavelength quantum well infrared photodetectors with GaAs quantum wells and GaInP barriers grown using gas-source molecular beam epitaxy. Wafers were grown with varying well widths. The optimum well width was 75 angstrom, which resulted in a detection peak at 13 μm and a cutoff wavelength of 15 μm. Dark current measurements of the samples with 15 μm cutoff wavelength show low dark current densities. The dark current characteristics have been investigated as a function of temperature and electron density in the well and compared to a model which takes into account thermionic emission and thermally assisted tunneling. The model is used to extract a saturation velocity of 1.5 x 105 cm/s for electrons. The photoelectron lifetime before recapture has been deduced from this carrier velocity and photoconductive gain measurements. The lifetime is found to be approximately 5 ps. Preliminary focal plane array imaging is demonstrated. [reprint (PDF)] |
2. | Photoconductance measurements on InTlSb/InSb/GaAs grown by low-pressure metalorganic chemical vapor deposition P.T. Staveteig, Y.H. Choi, G. Labeyrie, E. Bigan, and M. Razeghi Applied Physics Letters 64 (4)-- January 24, 1994 ...[Visit Journal] We report infrared photoconductors based on InTlSb/InSb grown by low‐pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The photoresponse spectrum extends up to 8 μm at 77 K. The absolute magnitude of the photoresponse is measured as a function of bias. The specific detectivity is estimated to be 3×108 Hz½·cm·W-1 at 7 μm wavelength. [reprint (PDF)] |
2. | Optical Investigations of GaAs-GaInP Quantum Wells Grown on the GaAs, InP, and Si Substrates H. Xiaoguang, M. Razeghi Applied Physics Letters 61 (14)-- October 5, 1992 ...[Visit Journal] We report the first photoluminescence investigation of GaAs‐Ga0.51In0.49P lattice matched multiquantum wells grown by the low pressure metalorganic chemical vapor deposition simultaneously in the same run on GaAs, Si, and InP substrates. The sharp photoluminescence peaks indicate the high quality of the samples on three different substrates. The temperature dependence of the photoluminescence indicates that the intrinsic excitonic transitions dominate at low temperature and free‐carrier recombinations at room temperature. The photoluminescence peaks of the samples grown on Si and InP substrates shift about 15 meV from the corresponding peaks of the sample grown on the GaAs substrate. Two possible interpretations are provided for the observed energy shift. One is the diffusion of In along the dislocation threads from GaInP to GaAs and another is the localized strain induced by defects and In segregations. [reprint (PDF)] |
2. | Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi Applied Physics Letters 71 (7)-- August 18, 1997 ...[Visit Journal] The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. [reprint (PDF)] |
2. | ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process J.M. Jung, C.R. Kim, H. Ryu, M. Razeghi and W.G. Jung Journal of Alloys and Compounds-- September 15, 2007 ...[Visit Journal] The 3D type, flower-like ZnO nanostructures from particle to flower-like or chestnut bur are fabricated on the GaN epitaxial layer substrate through the simple-route hydrothermal process. Structural characterization was made for the ZnO 3D nanostructures synthesized in different pH ranging from 9.5 to 11.0. The growth model was proposed and discussed regarding the fabrication mechanism and morphology of ZnO 3D flower-like nanostructure. The flower-like ZnO is composed of many thin single crystals ZnO nanorods. Bigger and thicker ZnO structure is fabricated with the increase of pH in solution. The enhanced UV emission in the PL measurement and the spectra in the Raman spectroscopy for ZnO–GaN heterojunction material were discussed. [reprint (PDF)] |
2. | Optimized structure for InGaAsP/GaAs 808nm high power lasers H. Yi, J. Diaz, L.J. Wang, I. Eliashevich, S. Kim, R. Williams, M. Erdtmann, X. He, E. Kolev and M. Razeghi Applied Physics Letters 66 (24)-- June 12, 1995 ...[Visit Journal] The optimized structure for the InGaAsP/GaAs quaternary material lasers (λ=0.808 μm) is investigated for the most efficient high‐power operation through an experiment and theoretical study. A comparative study is performed of threshold current density Jth and differential efficiency ηd dependence on cavity length (L) for two different laser structures with different active layer thickness (150 and 300 Å) as well as for laser structures with different multiple quantum well structures. A theoretical model with a more accurate formulation for minority leakage phenomenon provides explanation for the experimental results and sets general optimization rules for other lasers with similar restrictions on the band gap and refractive index difference between the active layer and the cladding layers. [reprint (PDF)] |
2. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi Proc. SPIE 11687 (2021) 116872D-1 ...[Visit Journal] Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
Page 15 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|