About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 14 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Sandwich method to grow high quality AlN by MOCVD Demir , H Li, Y Robin, R McClintock, S Elagoz and M Razeghi Journal of Physics D: Applied Physics 51, pp. 085104-- February 7, 2018 ...[Visit Journal] We report pulsed atomic layer epitaxy growth of a very high crystalline quality, thick (~2 µm) and crack-free AlN material on c-plane sapphire substrates via a sandwich method using metal organic chemical vapor deposition. This sandwich method involves the introduction of a relatively low temperature (1050 °C) 1500 nm thick AlN layer between two 250 nm thick AlN layers which are grown at higher temperature (1170 °C). The surface morphology and crystalline quality remarkably improve using this sandwich method. A 2 µm thick AlN layer was realized with 33 arcsec and 136 arcsec full width at half maximum values for symmetric and asymmetric reflections of ω-scan, respectively, and it has an atomic force microscopy root-mean-square surface roughness of ~0.71 nm for a 5 × 5 µm² surface area. [reprint (PDF)] |
2. | III-nitride based avalanche photo detectors R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal] Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)] |
2. | InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging S. Tsao, H. Lim, H. Seo, W. Zhang and M. Razeghi IEEE Sensors Journal, Vol. 8, No. 6, p. 936-941-- June 1, 2008 ...[Visit Journal] We report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metalorganic chemical vapor depositon. The detectivity was 6 x 1010cm·Hz1/2·W-1 at 150 K and a bias of 5 V with a peak detection wavelength around 4.0 micron and a quantum efficiency of 48%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature. A 320 x 256 middle wavelength infrared focal plane array operating at temperatures up to 200 K was also demonstrated. The focal plane array had 34 mA/W responsivity, 1.1% conversion efficiency, and noise equivalent temperature difference of 344 mK at 120 K operating temperature. [reprint (PDF)] |
2. | Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 7, 045313 -- April 26, 2017 ...[Visit Journal] Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)] |
2. | High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi Nature Scientific Reports 6, Article number: 24144-- April 7, 2016 ...[Visit Journal] We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)] |
2. | QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL Y. Ma, R. Lewicki, M. Razeghi and F. Tittel Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal] An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)] |
2. | Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature Z. Vashaei, C. Bayram and M. Razeghi Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal] GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)] |
2. | Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal] We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)] |
2. | Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi Applied Physics Letters, 89 (11)-- September 11, 2006 ...[Visit Journal] The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. [reprint (PDF)] |
2. | Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering Y. Wei and M. Razeghi Physical Review B, 69 (8)-- February 15, 2004 ...[Visit Journal] We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. [reprint (PDF)] |
2. | Very Long Wavelength Infrared Type-II Detectors Operating at 80K H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, G.J. Brown, W.C. Mitchel, and Y.S. Park Applied Physics Letters 77 (11)-- September 11, 2000 ...[Visit Journal] We report a demonstration of very long wavelength infrared detectors based on InAs/GaSb superlattices operating at T = 80 K. Detector structures with excellent material quality were grown on an optimized GaSb buffer layer on GaAs semi-insulating substrates. Photoconductive devices with 50% cutoff wavelength of λc = 17 μm showed a peak responsivity of about 100 mA/W at T = 80 K. Devices with 50% cutoff wavelengths up to λc = 22 μm were demonstrated at this temperature. Good uniformity was obtained over large areas even for the devices with very long cutoff wavelengths. [reprint (PDF)] |
2. | Multi-color 4–20 μm In-P-based Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] In order to tune the wavelength of lattice-matched QWIP detectors over the range from 4 - 20 &mum, new designs are demonstrated for the first time which combine InGaAlAs and InGaAsP layers lattice-matched to InP and grown by gas-source molecular beam epitaxy. We demonstrate the first long-wavelength quantum well infrared photodetectors using the lattice-matched n-doped InGaAlAs/InP materials system. Samples with AlAs mole fractions of 0.0, 0.1, and 0.15 result in cutoff wavelengths of 8.5, 13.3, and 19.4 μm, respectively. A 45 degree facet coupled illumination responsivity of R equals 0.37 A/W and detectivity of D*(λ) equals 1x109 cm·Hz½·W-1 at T = 77 K, for a cutoff wavelength λc equals 13.3 μm have been achieved. Based on the measured intersubband photoresponse wavelength, a null conduction band offset is expected for In0.52Ga0.21Al0.27As/InP heterojunctions. We also report quantum well infrared photodetector structures of In0.53Ga0.47As/Al0.48In0.52As grown on InP substrate with photoresponse at 4 μm suitable for mid-wavelength infrared detectors. These detectors exhibit a constant peak responsivity of 30 mA/W independent of temperature in the range from T equals 77 K to T equals 200 K. Combining these two materials, we report the first multispectral detectors that combine lattice-matched quantum wells of InGaAs/InAlAs and InGaAs/InP. Utilizing two contacts, a voltage tunable detector with (lambda) p equals 8 micrometer at a bias of V equals 5 V and λp equals 4 μm at V equals 10 V is demonstrated. [reprint (PDF)] |
2. | Solar blind GaN p-i-n photodiodes D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi Applied Physics Letters 72 (25)-- June 22, 1998 ...[Visit Journal] We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011 Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. [reprint (PDF)] |
2. | Recent advances in III-Nitride materials, characterization and device applications M. Razeghi, X. Zhang, P. Kung, A. Saxler, D. Walker, K.Y. Lim, and K.S. Kim SPIE Conference: Solid State Crystals in Optoelectronics and Semiconductor Technology; Proceedings 3179-- October 7, 1996 ...[Visit Journal] High-quality AlN, GaN, AlGaN have been grown on sapphire substrate by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The x-ray rocking curve of AlN and GaN were 100 arcsecs and 30 arcsecs respectively with Pendelloesung oscillations, which are the best reported to date. GaN with high crystallinity simultaneously exhibited high optical and electrical quality. Photoluminescence linewidth of GaN at 77K was as low as 17 meV, which is the best reported to date. Si-doped GaN had a mobility higher than 300 cm²/V·s. GaN has been also successfully grown on LiGaO2 substrate with LP-MOCVD for the first time. AlGaN for the entire composition range has been grown. These layers exhibited the lowest x-ray FWHM reported to date. The excellent optical quality of these layers have been characterized by room temperature UV transmission and photoluminescence. N-type doping of AlGaN with Si has ben achieved up to 60 percent Al with mobility as high as 78 cm²/V·s. AlxGa1-xN/AlyGa1-yN superlattice with atomically sharp interface have been demonstrated. Optically-pumped stimulated emission in GaN:Ge and GaN:Si has been observed with threshold optical power density as low as 0.4 MW/cm². AlGaN photoconductors with cut-off wavelengths from 200 nm to 365 nm have been achieved for the first time. GaN p-n junction photovoltaic detector with very selective photoresponse have been demonstrated and theoretically modeled. Ti/AlN/Si metal-insulator- semiconductor capacitor with high capacitance-voltage performances at both low and high frequencies and low interface trap level density have been demonstrated for the first time in this material system. [reprint (PDF)] |
2. | Investigation of 0.8 μm InGaAsP-GaAs laser diodes with Multiple Quantum Wells J. Diaz, H. Yi, S. Kim, M. Erdtmann, L.J. Wang, I. Eliashevich, E. Bigan and M. Razeghi Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal] In this paper, we studied the effects of the active region structure (one, two and three quantum wells with same total thickness) for high-power InGaAsP-GaAs separate confinement heterostructure lasers emitting at 0.8 μm wavelength. Experimental results for the lasers grown by low pressure metalorganic chemical vapor deposition show excellent agreement with the theoretical model. Total output power of 47 W from an uncoated 1 cm-wide laser bar was achieved in quasi-continuous wave operation [reprint (PDF)] |
2. | Short Wavelength Solar-Blind Detectors: Status, Prospects, and Markets M. Razeghi IEEE Proceedings, Wide Bandgap Semiconductor Devices: The Third Generation Semiconductor Comes of Age 90 (6)-- June 1, 2002 ...[Visit Journal] Recent advances in the research work on III-nitride semiconductors and AlxGa1-xN materials in particular has renewed the interest and led to significant progress in the development of ultraviolet (UV) photodetectors able to detect light in the mid- and near-UV spectral region (λ∼200-400 nm). There have been a growing number of applications which require the use of such sensors and, in many of these, it is important to be able to sense UV light without detecting infrared or visible light, especially from the Sun, in order to minimize the chances of false detection or high background. The research work on short-wavelength UV detectors has, therefore, been recently focused on realizing short-wavelength "solar-blind" detectors which, by definition, are insensitive to photons with wavelengths longer than ∼285 nm. In this paper the development of AlxGa1-xN-based solar-blind UV detectors will be reviewed. The technological issues pertaining to material synthesis and device fabrication will be discussed. The current state-of-the-art and future prospects for these detectors will be reviewed and discussed. [reprint (PDF)] |
2. | Band gap tunability of Type-II Antimonide-based superlattices M. Razeghi and B.M. Nguyen Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010 ...[Visit Journal] Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level.
In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. [reprint (PDF)] |
2. | Recent advances in mid infrared (3-5 μm) quantum cascade lasers Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal] Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)] |
2. | High Carrier Lifetime InSb Grown on GaAs Substrates E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal] We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)] |
2. | High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal] We report a room-temperature eight-element phase-locked quantum cascade laser
array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency
of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode
emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active
region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV)
design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge
type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)] |
2. | 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal] We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)] |
2. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
2. | Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal] Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)] |
2. | Quntum Cascade Laser Breakthrough for Advanced Remote Detection Manijeh Razeghi, Wenjia Zhou, Donghai Wu, Ryan McClintock, and Steven Slivken Photonics Spectra, November issue-- November 1, 2016 ...[Visit Journal] The atoms in a molecule can bend, stretch and rotate with respect to one another, and these excitations are largely optically active. Most molecules, from simple to moderately complex, have a characteristic absorption spectrum in the 3- to 14-µrn wavelength range that can be uniquely identified and quantified in real time. Infrared spectroscopy has been used to study these absorption features and develop different molecular "fingerprints." |
2. | Theoretical investigation of minority carrier leakage of high-power 0.8 μm InGaAsP/InGaP/GaAs laser diodes J. Diaz, I. Eliashevich, H.J. Yi, M. Stanton, and M. Razeghi Applied Physics Letters 65 (18)-- October 31, 1994 ...[Visit Journal] We report a theoretical model that accurately describes the effects of minority carrier leakage from the InGaAsP waveguide into InGaP cladding layers in high‐power aluminum-free 0.8 μm InGaAsP/InGaP/GaAs separate confinement heterostructure lasers. Current leakage due to the relatively low band‐gap discontinuity between the active region and the InGaP barrier can be eliminated by employing laser diodes with cavity length longer than 500 μm. Experimental results for lasers grown by low-pressure metalorganic chemical vapor deposition are in excellent agreement with the theoretical model. [reprint (PDF)] |
Page 14 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|