About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 13 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
2. | Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi Opt. Express 23, 21159-21164 -- August 10, 2015 ...[Visit Journal] A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. [reprint (PDF)] |
2. | High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices Jiakai Li; Arash Dehzangi; Donghai Wu; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128813-- January 31, 2020 ...[Visit Journal] A two terminal short wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb on GaSb substrate are designed fabricated and presented. With the base thickness of 40 nm, the device exhibited 100% cut-off wavelengths of ~2.3 μm at 300K. The saturated peak responsivity value is of 325.5 A/W at 300K, under front-side illumination without any anti-reflection coating. A saturated optical gain at 300K was 215 a saturated dark current shot noise limited specific detectivity of 4.9×1011 cm·Hz½/W at 300 K was measured. Similar heterojunction phototransistor structure was grown and fabricated with different method of processing for high speed testing. For 80 μm diameter
circular diode size under 20 V applied reverse bias, a −3 dB cut-off frequency of 1.0 GHz was achieved, which showed the potential of type-II superlattice based heterojunction phototransistors to be used for high speed detection. [reprint (PDF)] |
2. | Quantum cascade lasers that emit more light than heat Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal] For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)] |
2. | Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal] The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)] |
2. | High power quantum cascade lasers M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S.R. Darvish New Journal of Physics (NJP), Volume 11, p. 125017-- December 1, 2009 ...[Visit Journal] We report the most recent state-of-art quantum cascade laser results at wavelengths around 4.8 and 10 μm. At 4.8 μm, a room temperature wall plug efficiency (WPE) of 22 and 15.5% are obtained in pulsed mode and continuous wave (cw) mode, respectively. Room temperature cw output power reaches 3.4 W. The same laser design is able to reach a WPE of 36% at 120 K in pulsed mode. At 10 μm, room temperature average power of 2.2 W and cw power of 0.62 W are obtained. We also explore lasers utilizing the photonic crystal distributed feedback mechanism, and we demonstrate up to 12 W peak power operation at three different wavelengths around 4.7 μm with a waveguide width of 100 μm and diffraction limited beam quality. [reprint (PDF)] |
2. | Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices MANIJEH RAZEGHI,* WENJIA ZHOU,STEVEN SLIVKEN,QUAN-YONG LU,DONGHAI WU, AND RYAN MCCLINTOC Applied Optics Vol. 56, No. 31 -- October 10, 2017 ...[Visit Journal] The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems. [reprint (PDF)] |
2. | High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures P.Y. Delaunay and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008 ...[Visit Journal] Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%.
[reprint (PDF)] |
2. | Development of material quality and structural design for high performance type-II InAs/GaSb superlattice photodiodes and focal plane arrays M. Razeghi, B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang, M.Z. Tidrow and V. Nathan SPIE Porceedings, Vol. 7082, San Diego, CA 2008, p. 708204-- August 11, 2008 ...[Visit Journal] Recent progress made in the structure design, growth and processing of Type-II InAs/GaSb
superlattice photo-detectors lifted both the quantum efficiency and the R0A product of the detectors. Type-II superlattice demonstrated its ability to perform imaging in the Mid-Wave Infrared (MWIR)and Long-Wave Infrared (LWIR) ranges, becoming a potential competitor for technologies such as Quantum Well Infrared Photo-detectors (QWIP) and Mercury Cadmium Telluride (MCT). Using an
empirical tight-binding model, we developed superlattices designs that were nearly lattice-matched to the GaSb substrates and presented cutoff wavelengths of 5 and 11 μm. We demonstrated high quality material growth with X-ray FWHM below 30 arcsec and an AFM rms roughness of 1.5 Å over an
area of 20x20 μm2. The detectors with a 5 μm cutoff, capable of operating at room temperature,
showed a R0A of 1.25 106 Ω.cm2 at 77K, and a quantum efficiency of 32%. In the long wavelength
infrared, we demonstrated high quantum efficiencies above 50% with high R0A products of 12 Ω.cm2
by increasing the thickness of the active region. Using the novel M-structure superlattice design, more than one order of magnitude improvement has been observed for electrical performance of the
devices. Focal plane arrays in the middle and long infrared range, hybridized to an Indigo read out
integrated circuit, exhibited high quality imaging. [reprint (PDF)] |
2. | Very high performance LWIR and VLWIR type-II InAs/GaSb superlattice photodiodes with M-structure barrier B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang and M. Razeghi SPIE Proceedings, Vol. 7082, San Diego, CA 2008, p. 708205-- September 3, 2008 ...[Visit Journal] LWIR and VLWIR type-II InAs/GaSb superlattice photodetectors have for long time suffered from a
high dark current level and a low dynamic resistance which hampers the its emergence to the infrared detection and imaging industry. However, with the use of M-structure superlattice, a new Type-II binary InAs/GaSb/AlSb superlattice design, as an effective blocking barrier, the dark current in type-II superlattice diode has been significantly reduced. We have obtained comparable differential resistance product to the MCT technology at the cut-off wavelength of 10 and 14μm. Also, this new design is compatible with the optical optimization scheme, leading to high quantum efficiency, high special detectivity devices for photon detectors and focal plane arrays. [reprint (PDF)] |
2. | III-nitride based avalanche photo detectors R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal] Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)] |
2. | Current status and potential of high power mid-infrared intersubband lasers S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal] Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)] |
2. | High power InAsSb/InPAsSb/InAs mid-infrared lasers A. Rybaltowski, Y. Xiao, D. Wu, B. Lane, H. Yi, H. Feng, J. Diaz, and M. Razeghi Applied Physics Letters 71 (17)-- October 27, 1997 ...[Visit Journal] We demonstrate high-power InAsSb/InPAsSb laser bars (λ ≈ 3.2 μm) consisting of three 100 μm-wide laser stripes of 700 μm cavity length, with peak output power up to 3 W at 90 K, and far-fields for the direction perpendicular to the junction as narrow as 12° full width half maximum. Spectra and far-field patterns of the laser bars are shown to have excellent characteristics for a wide range of operating conditions, suggesting the possibility of even higher light power emission with good beam quality. Joule heating is shown to be the major factor limiting higher power operation. [reprint (PDF)] |
2. | Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi Applied Physics Letters, Vol. 91, No. 23, p. 231106-- December 3, 2007 ...[Visit Journal] A substrate removal technique using an InAsSb etch stop layer improves by a factor of 2 the quantum efficiency of back side illuminated type-II InAs/GaSb superlattice photodetectors. After etching of the GaSb substrate with a CrO3 based solution, the quantum efficiency of the diodes presents Fabry-Pérot oscillations averaging at 56%. Due to the confinement of the infrared light inside the devices, the quantum efficiency for certain devices reaches 75% at 8.5 µm. The implementation of this new technique to a focal plane array resulted in a decrease of the integration time from 0.23 to 0.08 ms. [reprint (PDF)] |
2. | Quantum-dot infrared photodetectors and focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060I-1-- April 21, 2006 ...[Visit Journal] We report our recent results about mid-wavelength infrared quantum-dot infrared photodetectors (QDIPs) grown by low-pressure metalorganic chemical vapor deposition. A very high responsivity and a very low dark current were obtained. A high peak detectivity of the order of 3×1012 Jones was achieved at 77 K. The temperature dependent device performance was also investigated. The improved temperature insensitivity compared to QWIPs was attributed to the properties of quantum dots. The device showed a background limited performance temperature of 220 K with a 45° field of view and 300K background. [reprint (PDF)] |
2. | High Power 0.98 μm GaInAs/GaAs/GaInP Multiple Quantum Well Laser K. Mobarhan, M. Razeghi, G. Marquebielle and E. Vassilaki Journal of Applied Physics 72 (9)-- November 1, 1992 ...[Visit Journal] We report the fabrication of high quality Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser emitting at 0.98 μm grown by low pressure metalorganic chemical vapor deposition. Continuous wave operation with output power of 500 mW per facet was achieved at room temperature for a broad area laser with 130 μm width and 300 μm cavity length. This is an unusually high value of output power for this wavelength laser in this material system. The differential quantum efficiency exceeded 75% with excellent homogeneity and uniformity. The characteristic temperature, T0 was in the range of 120–130 K. [reprint (PDF)] |
2. | MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire Ji-Hyeon Park , Ryan McClintock, Alexandre Jaud, Arash Dehzangi , Manijeh Razeghi Applied Physics Express 12, 095503-- August 28, 2019 ...[Visit Journal] We fabricated β-Ga2O3:Si metal-oxide field-effect transistors (MOSFETs) on c-plane sapphire substrates which typically showed maximum drain current of 100 mA·mm−1. β-Ga2O3:Si thin films were realized on c-plane sapphire substrates through a combination of metalorganic chemical vapor deposition and post-annealing. The MOSFET device presented excellent on/off drain current ratio of ∼1011 with very low gate leakage current, sharp pinch off behavior, and a breakdown voltage of 400 V at VG = −40 V. The growth and fabrication of β-Ga2O3:Si MOSFETs on
c-plane sapphire is valuable to its demonstration of the great potential for future high-power electronic devices. [reprint (PDF)] |
2. | Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection B.M. Nguyen, S. Abdollahi Pour, S. Bogdanov and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760825-1-- January 22, 2010 ...[Visit Journal] The bandstructure tunability of Type-II antimonide-based superlattices has been significantly enhanced since the introduction of the M-structure superlattice, resulting in significant improvements of Type-II superlattice infrared detectors. By using M-structure, we developed the pMp design, a novel infrared photodetector architecture that inherits the advantages of traditional photoconductive and photovoltaic devices. This minority electron unipolar device consists of an M-structure barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. Applied for the very long wavelength detection, at 77K, a 14µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W at 50mV bias and the associated shot-noise detectivity of 4x1010 Jones. [reprint (PDF)] |
2. | Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal] The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)] |
2. | Intersubband hole absorption in GaAs-GaInP Quantum Wells grown by Gas Source Molecular Beam Epitaxy J. Hoff, C. Jelen, S. Slivken, E. Michel, O. Duchemin, E. Bigan, and M. Razeghi with G. Brown and S.M. Hegde (Wright Laboratory) Applied Physics Letters 65 (9)-- August 29, 1994 ...[Visit Journal] P-doped GaAs‐GaInP quantum wells have been grown on GaAs substrate by gas source molecular beam epitaxy. Structural quality has been evidenced by x-ray diffraction. A narrow low-temperature photoluminescence full width at half‐maximum has been measured. Strong hole intersubband absorption has been observed at 9 μm, and its dependence on light polarization has been investigated. [reprint (PDF)] |
2. | Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal] Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)] |
2. | Electroluminescence of InAs/GaSb heterodiodes D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal] The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)] |
2. | Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)] |
2. | Very Long Wavelength Infrared Type-II Detectors Operating at 80K H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, G.J. Brown, W.C. Mitchel, and Y.S. Park Applied Physics Letters 77 (11)-- September 11, 2000 ...[Visit Journal] We report a demonstration of very long wavelength infrared detectors based on InAs/GaSb superlattices operating at T = 80 K. Detector structures with excellent material quality were grown on an optimized GaSb buffer layer on GaAs semi-insulating substrates. Photoconductive devices with 50% cutoff wavelength of λc = 17 μm showed a peak responsivity of about 100 mA/W at T = 80 K. Devices with 50% cutoff wavelengths up to λc = 22 μm were demonstrated at this temperature. Good uniformity was obtained over large areas even for the devices with very long cutoff wavelengths. [reprint (PDF)] |
2. | High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron S. Slivken, A. Evans, W. Zhang and M. Razeghi Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal] In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact.
[reprint (PDF)] |
2. | Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors E.K. Huang, A. Haddadi, G. Chen, A.M. Hoang, and M. Razeghi Optics Letters, Vol. 38, no. 1, p. 22-24-- January 1, 2013 ...[Visit Journal] A versatile dual-band detector capable of active and passive use is demonstrated using short-wave (SW) and midwave(MW) IR type-II superlattice photodiodes. A bilayer etch-stop scheme is introduced for back-side-illuminated detectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density
to be ~1 × 10-5 A/cm² for the ∼4.2 μm cutoff MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F∕2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using tint 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. Excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)] |
Page 13 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
|