About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 12 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
2. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal] We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)] |
2. | Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal] InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76 200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures. [reprint (PDF)] |
2. | Room temperature operation of InxGa1-xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD D. H. Wu, Y. Y. Zhang, and M. Razeghi Applied Physics Letters 112, 111103-- March 14, 2018 ...[Visit Journal] We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2, peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with calculated specific detectivity of 2.4×109 cm.Hz1/2/W at 3.81 μm. [reprint (PDF)] |
2. | Broadband, Tunable, and Monolithic Quantum Cascade Lasers M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken. Semiconductor lasers; (140.3600) Lasers, tunable-- May 19, 2017 ...[Visit Journal] This article describes the state of research and recent developments related to broadband quantum cascade lasers. Monolithic tuning and system development is also discussed. [reprint (PDF)] |
2. | High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal] Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)] |
2. | Progress in monolithic, broadband, widely tunable midinfrared quantum cascade lasers Manijeh Razeghi Wenjia Zhou Ryan McClintock Donghai Wu Steven Slivken Optical Engineering 57(1), 011018-- December 1, 2017 ...[Visit Journal] We present recent progress on the development of monolithic, broadband, widely tunable midinfrared
quantum cascade lasers. First, we show a broadband midinfrared laser gain realized by a heterogeneous quantum cascade laser based on a strain balanced composite well design of Al0.63In0.37As∕Ga0.35In0.65As∕
Ga0.47In0.53As. Single mode emission between 5.9 and 10.9 μm under pulsed mode operation was realized from a distributed feedback laser array, which exhibited a flat current threshold across the spectral range. Using the broadband wafer, a monolithic tuning between 6.2 and 9.1 μm was demonstrated from a beam combined
sampled grating distributed feedback laser array. The tunable laser was utilized for a fast sensing of methane under pulsed operation. Transmission spectra were obtained without any moving parts, which showed excellent agreement to a standard measurement made by a Fourier transform infrared spectrometer. [reprint (PDF)] |
2. | State-of-the-art Type II Antimonide-based superlattice photodiodes for infrared detection and imaging M. Razeghi, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, S. Abdollahi Pour, P. Manurkar, and S. Bogdanov SPIE Proceedings, Nanophotonics and Macrophotonics for Space Environments II, San Diego, CA, Vol. 7467, p. 74670T-1-- August 5, 2009 ...[Visit Journal] Type-II InAs/GaSb Superlattice (SL), a system of multi interacting quantum wells was first introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this low dimensional system has drawn a lot of attention for its attractive quantum mechanics properties and its grand potential for the emergence into the application world, especially in infrared detection. In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs and imaging applications which elevated the performances of Type-II InAs/GaSb superlattice photodetectors to a comparable level to the state-of-the-art Mercury Cadmium Telluride. We will present in this talk the current status of the state-of-the-art Type II superlattice photodetectors and focal plane arrays, and the future outlook for this material system. [reprint (PDF)] |
2. | Spatial Noise and Correctability of Type-II InAs/GaSb Focal Plane Arrays P.Y. Delaunay and M. Razeghi IEEE Journal of Quanutm Electronics, April 2010, Vol. 46, No. 4, p. 584-588-- April 1, 2010 ...[Visit Journal] A long wavelength infrared focal plane array based on Type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference of the array was measured as low as 23 mK (f# = 2), for an integration time of 0.129 ms. The spatial noise of the array was dominated by the nonuniformity of the illumination through the circular aperture. A standard two-point nonuniformity correction improved the inhomogeneity equivalent temperature difference to 16 mK. The correctability just after calibration was 0.6. The long-term stability time was superior to 25 hours. [reprint (PDF)] |
2. | Reliability in room-temperature negative differential resistance characteristics of low-aluminum contact AlGaN/GaN double-barrier resonant tunneling diodes C. Bayram, Z. Vashaei, and M. Razeghi Applied Physics Letters, Vol. 97, No. 18, p. 181109-1-- November 1, 2010 ...[Visit Journal] AlGaN/GaN resonant tunneling diodes (RTDs), consisting of 20% (10%) aluminum-content in double-barrier (DB) active layer, were grown by metal-organic chemical vapor deposition on freestanding polar (c-plane) and nonpolar (m-plane) GaN substrates. RTDs were fabricated into 35-μm-diameter devices for electrical characterization. Lower aluminum content in the DB active layer and minimization of dislocations and polarization fields increased the reliability and reproducibility of room-temperature negative differential resistance (NDR). Polar RTDs showed decaying NDR behavior, whereas nonpolar ones did not significantly. Averaging over 50 measurements, nonpolar RTDs demonstrated a NDR of 67 Ω, a current-peak-to-valley ratio of 1.08, and an average oscillator output power of 0.52 mW. [reprint (PDF)] |
2. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
2. | Investigations of ZnO thin films grown on c-Al(2)O(3) by pulsed laser deposition in N(2) + O(2) ambient D.J. Rogers, D.C. Look, F.H. Teherani, K. Minder, M. Razeghi, A. Largeteau, G. Demazeau, J. Morrod, K.A. Prior, A. Lusson, and S. Hassani Physica Status Solidi (c), Vol. 5, No. 9, p. 3084-3087-- July 1, 2008 ...[Visit Journal] ZnO films were deposited on c-Al2O3 using pulsed laser deposition both with and without N2 in the growth ambient. X-ray diffraction revealed poorer crystal quality and surface morphology for one-step growths with N2 in the ambient. A marked improvement in both the crystallographic and surface quality was obtained through use of two-step growths employing nominally undoped ZnO buffer layers prior to growth with N2 in the ambient. All films showed majority n-type conduction in Hall measurements. Post-annealing for 30 minutes at 600 ºC in O2 systematically reduced both the carrier concentration and the conductivity. A base room temperature carrier concentration of ~ 1016 cm-3 was linked to Al diffusing from the substrate. 4.2 K photoluminescence spectra exhibited blue bands associated with the growths having N2 in the ambient. Temperature dependent Hall measurements were consistent with N being incorporated in the films. Processed devices did not, however, show rectifying behavior or electroluminescence. [reprint (PDF)] |
2. | Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers Quanyong Lu, Donghai Wu, Saumya Sengupta, Steven Slivken, Manijeh Razeghi Nature Scientific Reports 6, Article number: 23595-- March 24, 2016 ...[Visit Journal] A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. [reprint (PDF)] |
2. | High-power InGaAsP/GaAs 0.8 μm laser diodes and peculiarities of operational characteristics J. Diaz, I. Eliashevich, X. He, H. Yi, L. Wang, E. Kolev, D. Garbuzov, and M. Razeghi Applied Physics Letters 65 (8)-- August 22, 1994 ...[Visit Journal] High-power operation of 3 W in pulse mode, 750 mW in quasi-continuous wave and 650 mW in continuous wave per uncoated facet from 100 μm aperture has been demonstrated for 1 mm long cavity InGaAsP/GaAs 808 nm laser diodes prepared by low-pressure metalorganic chemical vapor deposition. Threshold current density of 300 A/cm², differential efficiency of 1.1 W/A, T0=155 °C, transverse beam divergence of 27°, and less than 2 nm linewidth at 808 nm have been measured. No degradation has been observed after 1000 h of operation in a quasi-continuous wave regime. [reprint (PDF)] |
2. | Comparison of Gain and Threshold Current Density for InGaAsP/GaAs λ = 808 nm) Lasers with Different Quantum-Well Thickness H.J. Yi, J. Diaz, I. Eliashevich, G. Lukas, S. Kim, D. Wu, M. Erdtmann, C. Jelen, S. Slivken, L.J. Wang, and M. Razeghi Journal of Applied Physics 79 (11)-- July 1, 1996 ...[Visit Journal] We investigated the quantum‐size effects of quantum well (QW) on gain and threshold current density for InGaAsP/GaAs (λ=808 nm) laser diodes. In this work, a comparison is made of lasers with different QW thickness while keeping the optical confinement factors constant. We found that the threshold current density and differential efficiency were not affected by narrowing the QW thickness. The theoretical model taking into account the mixing of the valence bands and momentum relaxation for InGaAsP/GaAs lasers with spontaneous emission (optically pumped) measurement shows that the absence of difference between these structures can be attributed to the high relaxation rate. [reprint (PDF)] |
2. | p-Type thin film field effect transistors based on lithium-doped nickel oxide channels grown by pulsed laser deposition V. E. Sandana; D. J. Rogers; F. H. Teherani; P. Bove; R. McClintock; M. Razeghi SPIE Proceedings Volume 10919, Oxide-based Materials and Devices X; 109191H -- March 12, 2019 ...[Visit Journal] Staggered back-gated Field Effect Transistor (FET) structures were made by growing Li-doped NiO on Si3N4/SiO2/Si (111) using room temperature pulsed laser deposition. Optical studies showed over 80% transmission for the NiO:Li channel at wavelengths > 500nm. The MISFET revealed rectifying transfer characteristics, with a VON close to zero, a channel mobility of ~ 1 cm²/V·s, a gate leakage current (at +5V) of 0.8 mA and an ION/IOFF ratio (at a Vgs of −15V) of ~ 103. The transistors showed enhancement-mode output characteristics indicative of a p-type channel with sharp pinchoff, hard saturation, a comparatively high (milliampere range) Id and a relatively low on-resistance of ~11 kΩ. Hence the adoption of Li doping in NiO channels would appear to be a promising approach to obtain p-type TFTs with superior transparency, speed and energy efficiency. [reprint (PDF)] |
2. | AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn Ilkay Demir, Yusuf Koçak, A. Emre Kasapoğlu, Manijeh Razeghi, Emre Gür and Sezai Elagoz Semicond. Sci. Technol. 34 075028-- June 24, 2019 ...[Visit Journal] We report a new growth approach pulsed co-doping growth of AlxGa1−xN (x > 0.5) epilayers on AlN/Al2O3 templates by metal organic vapor phase epitaxy (MOVPE). Using this approach SiH4 (silane) and TMIn (trimethylindium) supplied to the growth chamber alternately and pulsed during the growth of AlGaN epilayers. Structural and morphological quality of AlGaN epilayers were investigated by high resolution x-ray diffraction (HR-XRD), atomic force microscopy (AFM), Raman spectroscopy, and scanning electron microscopy (SEM) techniques. It has shown that higher crystalline quality with low full width at half maximum (FWHM) and smoother surface morphology with reduced hexagonal hillock density has been obtained by the pulsed co-doping growth approach. Volcano like hillock structures has been confirmed by Raman mapping. [reprint (PDF)] |
2. | Negative luminescence of InAs/GaSb superlattice photodiodes F. Fuchs, D. Hoffman, A. Gin, A. Hood, Y. Wei, and M. Razeghi Phys. Stat. Sol. C 3 (3)-- February 22, 2006 ...[Visit Journal] The emission behaviour of InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 μm. With a radiometric calibration of the experimental set-up the internal quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The quantitative analysis of the internal quantum efficiency of the non-equilibrium radiation enables the determination of the Auger coefficient. [reprint (PDF)] |
2. | Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal] Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)] |
2. | Recent performance records for mid-IR quantum cascade lasers M. Razeghi; Y. Bai; S. Slivken; S. Kuboya; S.R. Darvish Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications, 2009. TERA-MIR International Workshop [5379656], (2009) -- November 9, 2009 ...[Visit Journal] The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave operation is brought to 17%. Peak output power from a broad area (400 μm x 3 mm) device gives 120 W output power in pulsed mode operation at room temperature. Using a single-well-injector design, specifically made for low temperature operation, a record wall plug efficiency of 53% is demonstrated at 40 K. [reprint (PDF)] |
2. | Characterization of InTlSb/InSb Grown by Low Pressure Metalorganic Chemical Vapor Deposition on GaAs Substrat Y.H. Choi, P. Staveteig, E. Bigan, and M. Razeghi Journal of Applied Physics 75 (6)-- March 15, 1994 ...[Visit Journal] Optical properties of InTlSb, a new long wavelength infrared material, are investigated. InTlSb/InSb epilayers grown by low‐pressure metal‐organic chemical vapor deposition on semi‐insulating GaAs substrates were characterized using Auger electron spectroscopy and Fourier transform infrared spectroscopy. Auger electron spectra confirm the presence of thallium. Transmission measurements at 77 K indicate an absorption shift from 5.5 μm for InSb up to 8 μm for InTlSb that is confirmed by photoconductivity measurements. [reprint (PDF)] |
2. | Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim Applied Physics Letters 71 (6)-- August 11, 1997 ...[Visit Journal] Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. [reprint (PDF)] |
2. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
2. | High operating temperature MWIR photon detectors based on Type-II InAs/GaSb superlattice M. Razeghi, B.M. Nguyen, P.Y. Delaunay, S. Abdollahi Pour, E.K.W. Huang, P. Manukar, S. Bogdanov, and G. Chen SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76081Q-1-- January 22, 2010 ...[Visit Journal] Recent efforts have been paid to elevate the operating temperature of Type-II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300 K-background BLIP operation temperature to 166 K. At 77 K, the ~4.2 µm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ω·cm²) and a detectivity of 3x1013 cm·Hz½·W−1. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10 mK at 77 K. Uncooled camera is capable to capture hot objects such as soldering iron. [reprint (PDF)] |
2. | High-Power Continuous-Wave Operation of Quantum-Cascade Lasers Up to 60 °C J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken and M. Razeghi IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004 ...[Visit Journal] High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12 μm wide quantum-cascade lasers emitting at λ = 6 μm with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3 mm long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60°C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm2, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length. [reprint (PDF)] |
2. | Quantum cascade lasers that emit more light than heat Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal] For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)] |
Page 12 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
|