About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 12 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Novel process for direct bonding of GaN onto glass substrates using sacrificial ZnO template layers to chemically lift-off GaN from c-sapphire Rogers, D. J.; Ougazzaden, A.; Sandana, V. E.; Moudakir, T.; Ahaitouf, A.; Teherani, F. Hosseini; Gautier, S.; Goubert, L.; Davidson, I. A.; Prior, K. A.; McClintock, R. P.; Bove, P.; Drouhin, H.-J.; Razeghi, M. Proc. SPIE 8263, Oxide-based Materials and Devices III, 82630R (February 9, 2012)-- February 9, 2012 ...[Visit Journal] GaN was grown on ZnO-buffered c-sapphire (c-Al2O3) substrates by Metal Organic Vapor Phase Epitaxy. The ZnO then served as a sacrificial release layer, allowing chemical lift-off of the GaN from the c-Al2O3 substrate via selective wet etching of the ZnO. The GaN was subsequently direct-wafer-bonded onto a glass substrate. X-Ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray microanalysis, Room Temperature Photoluminescence & optical microscopy confirmed bonding of several mm2 of crack-free wurtzite GaN films onto a soda lime glass microscope slide with no obvious deterioration of the GaN morphology. Using such an approach, InGaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming and reusing the substrate. [reprint (PDF)] |
2. | Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam Steven Slivken, Donghai Wu & Manijeh Razeghi Scientific Reports volume 9, Article number: 549-- January 24, 2019 ...[Visit Journal] A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. A high quality output beam is realized with a simple, single-layer, anti-reflective coating. The beam shape and profile are shown to be independent of wavelength. [reprint (PDF)] |
2. | High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process J.M. Jung, C.R. Kim, H. Ryu, M. Razeghi and W.G. Jung Journal of Alloys and Compounds-- September 15, 2007 ...[Visit Journal] The 3D type, flower-like ZnO nanostructures from particle to flower-like or chestnut bur are fabricated on the GaN epitaxial layer substrate through the simple-route hydrothermal process. Structural characterization was made for the ZnO 3D nanostructures synthesized in different pH ranging from 9.5 to 11.0. The growth model was proposed and discussed regarding the fabrication mechanism and morphology of ZnO 3D flower-like nanostructure. The flower-like ZnO is composed of many thin single crystals ZnO nanorods. Bigger and thicker ZnO structure is fabricated with the increase of pH in solution. The enhanced UV emission in the PL measurement and the spectra in the Raman spectroscopy for ZnO–GaN heterojunction material were discussed. [reprint (PDF)] |
2. | Broadband monolithically-tunable quantum cascade lasers Wenjia Zhou, Ryan McClintock, Donghai Wu, Steven Slivken, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400A-- January 26, 2018 ...[Visit Journal] Mid-infrared lasers, emitting in the spectral region of 3-12 μm that contain strong characteristic vibrational transitions of
many important molecules, are highly desirable for spectroscopy sensing applications. High efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning, which is critical for spectroscopy applications, is still largely relying on incorporating external
gratings, which have stability issues. Here, we demonstrate the development a monolithic, widely tunable quantum cascade laser source emitting between 6.1 and 9.2 μm through an on-chip integration of a sampled grating distributed
feedback tunable laser array with a beam combiner. A compact tunable laser system was built to drive the individual lasers within the array and coordinate the driving of the laser array to produce desired wavelength. A broadband spectral
measurement (520cm-1) of methane shows excellent agreement with Fourier transform infrared spectrometer measurement. Further optimizations have led to high performance monolithic tunable QCLs with up to 65 mW output
while delivering fundamental mode outputs. [reprint (PDF)] |
2. | Type-II InAs/GaSb Superlattices and Detectors with Cutoff Wavelength Greater Than 18 μm M. Razeghi, Y. Wei, A. Gin, G.J. Brown and D. Johnstone Proceedings of the SPIE, San Jose, CA, Vol. 4650, 111 (2002)-- January 25, 2002 ...[Visit Journal] The authors report the most recent advances in Type-II InAs/GaSb superlattice materials and photovoltaic detectors. Lattice mismatch between the substrate and the superlattice has been routinely achieved below 0.1%, and less than 0.0043% as the record. The FWHM of the zeroth order peak from x-ray diffraction has been decreased below 50 arcsec and a record of less than 44arcsec has been achieved. High performance detectors with 50% cutoff beyond 18 micrometers up to 26 micrometers have been successfully demonstrated. The detectors with a 50% cut-off wavelength of 18.8 micrometers showed a peak current responsivity of 4 A/W at 80K, and a peak detectivity of 4.510 cm·Hz½·W-1 was achieved at 80K at a reverse bias of 110 mV under 300 K 2(pi) FOV background. Some detectors showed a projected 0% cutoff wavelength up to 28~30 micrometers . The peak responsivity of 3Amp/Watt and detectivity of 4.2510 cm·Hz½·W-1 was achieved under -40mV reverse bias at 34K for these detectors. [reprint (PDF)] |
2. | High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal] We report on solar-blind ultraviolet, AlxGa1-x N-
based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to
66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)] |
2. | InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal] Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)] |
2. | Room temperature continuous wave THz frequency comb based on quantum cascade lasers M. Razeghi; Q. Y. Lu; F. H. Wang; D. H. Wu; S. Slivken Proc. SPIE 11124, Terahertz Emitters, Receivers, and Applications X, 1112407-- September 6, 2019 ...[Visit Journal] Frequency combs, spectra of phase-coherent equidistant lines, have revolutionized time and frequency metrology. The recently developed quantum cascade laser (QCL) comb has exhibits great potential with high power and broadband spectrum. However, in the terahertz (THz) range, cryogenic cooling has to be applied for THz QCL combs. We report a room temperature THz frequency comb at 3.0 THz based on difference-frequency generation from a mid-IR QCL comb. A largely detuned distributed-feedback grating is integrated into the QCL cavity to provide the single mode operation as well as enhanced spatial hole-burning effect for multimode comb operation. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb provides a new solution to chip-based high-speed high-resolution THz spectroscopy with compact size at room temperature. [reprint (PDF)] |
2. | Transport and photodetection in self-assembled semiconductor quantum dots M Razeghi, H Lim, S Tsao, J Szafraniec, W Zhang, K Mi and B Movaghar Nanotechnology 16 219-- January 7, 2005 ...[Visit Journal] A great step forward in science and technology was made when it was
discovered that lattice mismatch can be used to grow highly ordered,
artificial atom-like structures called self-assembled quantum dots. Several
groups have in the meantime successfully demonstrated useful infrared
photodetection devices which are based on this technology. The new
physics is fascinating, and there is no doubt that many new applications will
be found when we have developed a better understanding of the underlying
physical processes, and in particular when we have learned how to integrate
the exciting new developments made in nanoscopic addressing and
molecular self-assembly methods with semiconducting dots. In this paper
we examine the scientific and technical questions encountered in current
state of the art infrared detector technology and suggest ways of overcoming
these difficulties. Promoting simple physical pictures, we focus in particular
on the problem of high temperature detector operation and discuss the origin
of dark current, noise, and photoresponse. [reprint (PDF)] |
2. | Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi Nanotechnology 17-- January 1, 2006 ...[Visit Journal] GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)] |
2. | Defects in Organometallic Vapor-Phase Epitaxy-Grown GaInP Layers Feng S.L., Bourgoin J.C., Omnes F., and Razeghi M. Applied Physics Letters 59 (8), p. 941-- May 28, 1991 ...[Visit Journal] Non-intentionally doped metalorganic vapor‐phase epitaxy Ga1−x InxP layers, having an alloy composition (x = 0.49) corresponding to a lattice matched to GaAs, grown by metalorganic chemical vapor deposition, have been studied by capacitance‐voltage and deep-level transient spectroscopy techniques. They are found to exhibit a free‐carrier concentration at room temperature of the order of 1015 cm−3. Two electron traps have been detected. The first one, at 75 meV below the conduction band, is in small concentration (∼1013 cm−3) while the other, at about 0.9 eV and emitting electrons above room temperature, has a concentration in the range 1014–1015 cm−3. [reprint (PDF)] |
2. | Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices M. Razeghi, A. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, R. McClintock Infrared Physics & Technology, Volume 59, Pages 41-52 (2013)-- July 1, 2013 ...[Visit Journal] Type-II InAs/GaSb superlattices (T2SLs), a system of multi-interacting quantum wells, was introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention especially for infrared detection. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of T2SL-based photo-detectors and focal plane arrays for imaging in different infrared regions, from SWIR to VLWIR, and the future outlook of this material system. [reprint (PDF)] |
2. | Deep ultraviolet (254 nm) focal plane array E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011 ...[Visit Journal] We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
2. | Effect of contact doping on superlattice-based minority carrier unipolar detectors B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal] We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)] |
2. | Comparison of Trimethylgallium and Triethylgallium for the Growth of GaN A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. Mitchel, and H.R. Vydyanath Applied Physics Letters 71 (22)-- December 1, 1997 ...[Visit Journal] GaN films grown by low-pressure metalorganic chemical vapor deposition using trimethylgallium and triethylgallium as gallium precursors are compared. The films were characterized by x-ray diffraction, Hall effect, photoluminescence, secondary ion mass spectroscopy, and etch pit density measurements. GaN layers grown using triethylgallium exhibited superior electrical and optical properties and a lower carbon impurity concentration. [reprint (PDF)] |
2. | Recent advances in IR semiconductor laser diodes and future trends M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal] The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)] |
2. | Optoelectronic Integrated Circuits (OEICs) for Next Generation WDM Communications M. Razeghi and S. Slivken SPIE Conference, Boston, MA, -- July 29, 2002 ...[Visit Journal] This paper reviews some of the key enabling technologies for present and future optoelectronic intergrated circuits. This review concentrates mainly on technology for lasers, waveguides, modulators, and fast photodetectors as the basis for next generation communicatiosn systems. Emphasis is placed on intergrations of components and mass production of a generic intelligent tranciever. [reprint (PDF)] |
2. | Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi Applied Physics Letters, 89 (11)-- September 11, 2006 ...[Visit Journal] The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. [reprint (PDF)] |
2. | Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering Y. Wei and M. Razeghi Physical Review B, 69 (8)-- February 15, 2004 ...[Visit Journal] We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. [reprint (PDF)] |
2. | Recent advances in III-Nitride materials, characterization and device applications M. Razeghi, X. Zhang, P. Kung, A. Saxler, D. Walker, K.Y. Lim, and K.S. Kim SPIE Conference: Solid State Crystals in Optoelectronics and Semiconductor Technology; Proceedings 3179-- October 7, 1996 ...[Visit Journal] High-quality AlN, GaN, AlGaN have been grown on sapphire substrate by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The x-ray rocking curve of AlN and GaN were 100 arcsecs and 30 arcsecs respectively with Pendelloesung oscillations, which are the best reported to date. GaN with high crystallinity simultaneously exhibited high optical and electrical quality. Photoluminescence linewidth of GaN at 77K was as low as 17 meV, which is the best reported to date. Si-doped GaN had a mobility higher than 300 cm²/V·s. GaN has been also successfully grown on LiGaO2 substrate with LP-MOCVD for the first time. AlGaN for the entire composition range has been grown. These layers exhibited the lowest x-ray FWHM reported to date. The excellent optical quality of these layers have been characterized by room temperature UV transmission and photoluminescence. N-type doping of AlGaN with Si has ben achieved up to 60 percent Al with mobility as high as 78 cm²/V·s. AlxGa1-xN/AlyGa1-yN superlattice with atomically sharp interface have been demonstrated. Optically-pumped stimulated emission in GaN:Ge and GaN:Si has been observed with threshold optical power density as low as 0.4 MW/cm². AlGaN photoconductors with cut-off wavelengths from 200 nm to 365 nm have been achieved for the first time. GaN p-n junction photovoltaic detector with very selective photoresponse have been demonstrated and theoretically modeled. Ti/AlN/Si metal-insulator- semiconductor capacitor with high capacitance-voltage performances at both low and high frequencies and low interface trap level density have been demonstrated for the first time in this material system. [reprint (PDF)] |
2. | Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8 ...[Visit Journal] In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode
(SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb
H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. [reprint (PDF)] |
2. | Broadband, Tunable, and Monolithic Quantum Cascade Lasers M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken. Semiconductor lasers; (140.3600) Lasers, tunable-- May 19, 2017 ...[Visit Journal] This article describes the state of research and recent developments related to broadband quantum cascade lasers. Monolithic tuning and system development is also discussed. [reprint (PDF)] |
2. | Recent advances in mid infrared (3-5 μm) quantum cascade lasers Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal] Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)] |
2. | GaInAs/InP nanopillar arrays for long wavelength infrared detection A. Gin, Y. Wei, A. Hood, D. Hoffman, M. Razeghi and G.J. Brown SPIE Conference, Jose, CA, Vol. 5732, pp. 350-- January 22, 2005 ...[Visit Journal] Nanopillar devices have been fabricated from GaInAs/InP QWIP material grown by MOCVD. Using electron beam lithography and reactive ion etching techniques, large, regular arrays of nanopillars with controllable diameters ranging from 150 nm to less than 40 nm have been reproducibly formed. Photoluminescence experiments demonstrate a strong peak wavelength blue shift for nanopillar structures compared to the as-grown quantum well material. Top and bottom metal contacts have been realized using a polyimide planarization and etchback procedure. I-V and noise measurements have been performed. Optical measurements indicate photoconductive response in selected nanopillar arrays. Device peak wavelength response occurs at about 8 µm with peak device responsivity of 420 mA/W. Peak detectivity of 3×108 cm·Hz½/W has been achieved at -1V bias and 30 K. [reprint (PDF)] |
Page 12 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|