Page 24 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  25  >> Next  (605 Items)

1.  III-Nitride photon counting avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000N-1-11.-- February 1, 2008 ...[Visit Journal]
In order for solar and visible blind III-Nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avalanche photodetectors (APDs), and present the state-of-the-art results on photon counting based on the Geiger mode operation of GaN APDs. The devices are fabricated on transparent AlN templates specifically for back-illumination in order to enhance hole-initiated multiplication. The spectral response and Geiger-mode photon counting performance are analyzed under low photon fluxes, with single photon detection capabilities being demonstrated in smaller devices. Other major technical issues associated with the realization of high-quality visible-blind APDs and Geiger mode APDs are also discussed in detail and solutions to the major problems are described where available. Finally, future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 
1.  Review of high power frequency comb sources based on InP From MIR to THZ at CQD
Manijeh Razeghi, Quanyong Lu, Donghai Wu, Steven Slivken
Event: SPIE Optical Engineering + Applications, 2018, San Diego, California, United States-- September 14, 2018 ...[Visit Journal]
We present the recent development of high performance compact frequency comb sources based on mid-infrared quantum cascade lasers. Significant performance improvements of our frequency combs with respect to the continuous wave power output, spectral bandwidth, and beatnote linewidth are achieved by systematic optimization of the device's active region, group velocity dispersion, and waveguide design. To date, we have demonstrated the most efficient, high power frequency comb operation from a free-running room temperature continuous wave (RT CW) dispersion engineered QCL at λ~5-9 μm. In terms of bandwidth, the comb covered a broad spectral range of 120 cm−1 with a radio-frequency intermode beatnote spectral linewidth of 40 Hz and a total power output of 880 mW at 8 μm and 1 W at ~5.0 μm. The developing characteristics show the potential for fast detection of various gas molecules. Furthermore, THz comb sources based on difference frequency generation in a mid-IR QCL combs could be potentially developed. [reprint (PDF)]
 
1.  Characterization of InTlSb/InSb Grown by Low Pressure Metalorganic Chemical Vapor Deposition on GaAs Substrat
Y.H. Choi, P. Staveteig, E. Bigan, and M. Razeghi
Journal of Applied Physics 75 (6)-- March 15, 1994 ...[Visit Journal]
Optical properties of InTlSb, a new long wavelength infrared material, are investigated. InTlSb/InSb epilayers grown by low‐pressure metal‐organic chemical vapor deposition on semi‐insulating GaAs substrates were characterized using Auger electron spectroscopy and Fourier transform infrared spectroscopy. Auger electron spectra confirm the presence of thallium. Transmission measurements at 77 K indicate an absorption shift from 5.5 μm for InSb up to 8 μm for InTlSb that is confirmed by photoconductivity measurements. [reprint (PDF)]
 
1.  Injector doping level dependent continuous-wave operation of InP-based QCLs at λ~ 7.3 µm above room temperature
J.S. Yu, S. Slivken, and M. Razeghi
Semiconductor Science and Technology (SST), Vol. 25, No. 12, p. 125015-- December 1, 2010 ...[Visit Journal]
We report the continuous-wave (CW) operation of InGaAs/InAlAs quantum cascade lasers (QCLs) operating at λ ~ 7.3 µm above room temperature. The injector doping level–dependent CW characteristics above room temperature are investigated for doping densities between 7 × 1016 cm−3 and 2 × 1017 cm−3. The device performance, i.e. threshold current density, output power, operating temperature and characteristic temperature, depends strongly on the injector doping density. For a relatively low injector doping density of 7 × 1016 cm−3, a high-reflectivity-coated 10 µm wide and 4 mm long laser exhibits an improved device performance with an output power of 152 mW and a threshold current density of 1.37 kA cm−2 at 298 K under CW mode, operating up to 343 K. The thermal characteristics are also analyzed by the estimation from the experimentally measured data for the QCLs with different injector doping densities. [reprint (PDF)]
 
1.  Effects of well width and growth temperature on optical and structural characteristics of AlN/GaN superlattices grown by metal-organic chemical vapor deposition
C. Bayram, N. Pere-Laperne, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 20, p. 201906-1-- November 16, 2009 ...[Visit Journal]
AlN/GaN superlattices (SLs) employing various well widths (from 1.5 to 7.0 nm) are grown by metal-organic chemical vapor deposition technique at various growth temperatures (Ts) (from 900 to 1035 °C). The photoluminescence (PL), x-ray diffraction, and intersubband (ISB) absorption characteristics of these SLs and their dependency on well width and growth temperature are investigated. Superlattices with thinner wells (grown at the same Ts) or grown at lower Ts (employing the same well width) are shown to demonstrate higher strain effects leading to a higher PL energy and ISB absorption energy. Simulations are employed to explain the experimental observations. ISB absorptions from 1.04 to 2.15 µm are demonstrated via controlling well width and growth temperature. [reprint (PDF)]
 
1.  Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications
M. Razeghi
SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal]
Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)]
 
1.  Continuous operation of a monolithic semiconductor terahertz source at room temperature
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 104, 221105 (2014)-- June 3, 2014 ...[Visit Journal]
We demonstrate room temperature continuous wave THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Buried ridge, buried composite distributed-feedback waveguide with Čerenkov phase-matching scheme is used to reduce the waveguide loss and enhance the heat dissipation for continuous wave operation. Continuous emission at 3.6 THz with a side-mode suppression ratio of 20 dB and output power up to 3 μW are achieved, respectively. THz peak power is further scaled up to 1.4 mW in pulsed mode by increasing the mid-infrared power through increasing the active region doping and device area. [reprint (PDF)]
 
1.  RT-CW: widely tunable semiconductor THz QCL sources
M. Razeghi; Q. Y. Lu
Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications -- September 26, 2016 ...[Visit Journal]
Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)]
 
1.  Type II superlattice infrared detectors and focal plane arrays
Vaidya Nathan; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 654209 (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Type II superlattce photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method is initiated and developed for Type II superlattice. Growth characteristics such as group V segregation and incorporation phenomena are taken into account in the model and shown higher precision. A new Type II structure, called M-structure, is introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design is optimized to improve the performance. As a result, 55% quantum efficiency and 10 Ohm·cm² R0A are achieved for an 11.7 μm cut-off photodetector at 77K. FPA imaging at longwavelength is demonstrated with a capability of imaging up to 171K. At 81K, the noise equivalent temperature difference presented a peak at 0.33K. [reprint (PDF)]
 
1.  Recent advances in high power mid- and far-wavelength infrared lasers for free space communication
S. Slivken and M. Razeghi
SPIE Optics East Conference, October 1-4, 2006, Boston, MA Proceedings – Active and Passive Optical Components for Communications VI, Vol. 6389, p. 63890S-1-- October 4, 2006 ...[Visit Journal]
Link reliability is a significant issue for free space optical links. Inclement weather, such as fog, can seriously reduce the transmission of light through the atmosphere. However, this effect, for some types of fog, is wavelength-dependent. In order to improve link availability in both metro and hostile environments, mid- and far-wavelength infrared diode lasers can be of use. This paper will discuss some of the recent advances in high-power, uncooled quantum cascade lasers and their potential for use in long range and/or highly reliable free space communication links. [reprint (PDF)]
 
1.  Effects of substrate quality and orientation on the characteristics of III-nitride resonant tunneling diodes
Z. Vashaei, C. Bayram, R. McClintock and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol 7945, p. 79451A-- January 23, 2011 ...[Visit Journal]
Al(Ga)N/GaN resonant tunneling diodes (RTDs) are grown by metal-organic chemical vapor deposition. The effects of material quality on room temperature negative differential resistance (NDR) behaviour of RTDs are investigated by growing the RTD structure on AlN, GaN, and lateral epitaxial overgrowth GaN templates. This reveals that NDR characteristics of RTDs are very sensitive to material quality (such as surface roughness and dislocations density). The effects of the aluminum content of AlGaN double barriers (DB) and polarization fields on NDR characteristic of AlGaN/GaN RTDs were also investigated by employing low dislocation density c-plane (polar) and m-plane (nonpolar) freestanding GaN substrates. Lower aluminum content in the DB RTD active layer and minimization of dislocations and polarization fields enabled a more reliable and reproducible NDR behaviour at room temperature. [reprint (PDF)]
 
1.  High Performance Quantum Cascade Laser Results at the Centre for Quantum Devices
M. Razeghi and S. Slivken
Physica Status Solidi, 195 (1)-- January 1, 2003 ...[Visit Journal]
In this paper, we review some of the history and recent results related to the development of the quantum cascade laser at the Center for Quantum Devices. The fabrication of the quantum cascade laser is described relative to growth, characterization, and processing. State-of-the-art testing results for 5-11 μm lasers will be then be explored, followed by a future outlook for the technology. [reprint (PDF)]
 
1.  Type-II ‘M’ Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes
B-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64790S-1-10-- January 29, 2007 ...[Visit Journal]
In this work, an AlSb-containing Type-II InAs/GaSb superlattice, the so-called M-structure, is presented as a candidate for mid and long wavelength infrared detection devices. The effect of inserting an AlSb barrier in the GaSb layer is discussed and predicts many promising properties relevant to practical use. A good agreement between the theoretical calculation based on Empirical Tight Binding Method framework and experimental results is observed, showing the feasibility of the structure and its properties. A band gap engineering method without material stress constraint is proposed. [reprint (PDF)]
 
1.  High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization
S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal]
We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)]
 
1.  Superlattice sees colder objects in two colors and high resolution
M. Razeghi
SPIE Newsroom-- February 10, 2012 ...[Visit Journal]
A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)]
 
1.  High power 1D and 2D photonic crystal distributed feedback quantum cascade lasers
B. Gokden, Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79450C-- January 23, 2011 ...[Visit Journal]
For many practical applications that need bright sources of mid-infrared radiation, single mode operation and good beam quality are also required. Quantum cascade lasers are prominent candidates as compact sources of mid-infrared radiation capable of delivering very high power both CW and under pulsed operation. While 1D photonic crystal distributed feedback structures can be used to get single mode operation from quantum cascade lasers with narrow ridge widths, novel 2D photonic crystal cavity designs can be used to improve spectral and spatial purity of broad area quantum cascade lasers. In this paper, we demonstrate high power, spatially and spectrally pure operation at room temperature from narrow ridge and broad area quantum cascade lasers with buried 1D and 2D photonic crystal structures. Single mode continuous wave emission at λ = 4.8 μm up to 700 mW in epi-up configuration at room temperature was observed from a 11 μm wide 5 mm long distributed feedback quantum cascade laser with buried 1D gratings. High peak powers up to 34 W was obtained from a 3mm long 400 μm wide 2D photonic crystal distributed feedback laser at room temperature under pulsed operation. The far field profile had a single peak normal to the laser facet and the M2 figure of merit was as low as 2.5. Emission spectrum had a dominating single mode at λ = 4.36 μm. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz
M. Razeghi
IEEE Photonics Journal-Breakthroughs in Photonics 2010, Vol. 3, No. 2, p. 263-267-- April 26, 2011 ...[Visit Journal]
We review III-Nitride optoelectronic device technologies with an emphasis on recent breakthroughs. We start with a brief summary of historical accomplishments and then report the state-of-the-art in three key spectral regimes: (1) Ultraviolet (AlGaN-based avalanche photodiodes, single photon detectors, focal plane arrays, and light emitting diodes), (2) Visible (InGaN-based solid state lighting, lasers, and solar cells), and (3) Near-, mid-infrared, and terahertz (AlGaN/GaN-based gap-engineered intersubband devices). We also describe future trends in III-Nitride optoelectronic devices. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Applied Physics Letters, Vol. 95, No. 9-- August 31, 2009 ...[Visit Journal]
The gain in quantum dot/quantum well infrared photodetectors is investigated. The scaling of the gain with device length has been analyzed, and the behavior agrees with the previously proposed model. We conclude that we understand the gain in the low bias region, but in the high field region, discrepancies remain. An extension of the gain model is presented to cover the very high electric field region. The high field data are compared to the extended model and discussed. [reprint (PDF)]
 
1.  High-power λ ~ 9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode
J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, and M. Razeghi
Applied Physics Letters, 88 (9)-- February 27, 2006 ...[Visit Journal]
We report high-power continuous-wave (cw) operation of λ~9.5 μm quantum-cascade lasers to a temperature of 318 K. A high-reflectivity-coated 19-μm-wide and 3-mm-long device exhibits cw output powers as high as 150 mW at 288 K and still 22 mW at 318 K. In cw operation at 298 K, a threshold current density of 1.57 kA/cm2, a slope efficiency of 391 mW/A, and a maximum wall-plug efficiency of 0.71% are obtained. [reprint (PDF)]
 
1.  Long-Wavelength InAsSb Photoconductors Operated at Near Room Temperatures (200-300 K)
J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi
Applied Physics Letters., 68 (1),-- January 1, 1996 ...[Visit Journal]
Long-wavelength InAs1−xSbx photoconductors operated without cryogenic cooling are reported. The devices are based on p-InAs1−xSbx/p-InSb heterostructures grown on (100) semi-insulating GaAs substrates by low pressure metalorganic chemical vapor deposition (LP‐MOCVD). Photoreponse up to 14 μm has been obtained in a sample with x=0.77 at 300 K, which is in good agreement with the measured infrared absorption spectra. The corresponding effective lifetime of ≊0.14 ns at 300 K has been derived from stationary photoconductivity. The Johnson noise limited detectivity at λ=10.6 μm is estimated to be about 3.27×107 cm· Hz½/W at 300 K. [reprint (PDF)]
 
1.  Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heatsinks
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612702-- January 23, 2006 ...[Visit Journal]
We report substantially improved performance of high power quantum cascade lasers by utilizing epi-side down mounting that provides superior heat dissipation properties. We have obtained CW power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epi-side down mounting has also permitted us to carry out initial lifetime tests on the mid-IR QCLs. No degradation of power output is seen even after over 300 hours of CW operation at 25°C with power output in excess of 300 mW. We believe these improvements should permit incorporation of mid-IR QCLs in reliable instrumentation. [reprint (PDF)]
 
1.  SOLID-STATE DEEP UV EMITTERS/DETECTORS: Zinc oxide moves further into the ultraviolet
David J. Rogers; Philippe Bove; Eric V. Sandana; Ferechteh Hosseini Teherani; Ryan McClintock; Manijeh Razeghi
Laser Focus World. 2013;49(10):33-36.-- October 10, 2013 ...[Visit Journal]
Latest advancements in the alloying of zinc oxide (ZnO) with magnesium (Mg) can offer an alternative to (Al) GaN-based emitters/detectors in the deep UV with reduced lattice and efficiency issues. The emerging potential of ZnO for UV emitter and detector applications is the result of a long, concerted, and fruitful R&D effort that has led to more than 7000 publications in 2012. ZnO is considered to be a potentially superior material for use in LEDs and laser diodes due to its larger exciton binding energy, as compared with 21 meV for GaN. Wet etching is also possible for ZnO with nearly all dilute acids and alkalis, while GaN requires hydrofluoric (HF) acid or plasma etching. High-quality ZnO films can be grown more readily on mismatched substrates and bulk ZnO substrates have better availability than their GaN equivalents.
 
1.  Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi
Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013 ...[Visit Journal]
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. [reprint (PDF)]
 
1.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016 ...[Visit Journal]
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. [reprint (PDF)]
 
1.  GaN avalanche photodiodes grown on m-plane freestanding GaN substrate
Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi
Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010 ...[Visit Journal]
M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. [reprint (PDF)]
 

Page 24 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  25  >> Next  (605 Items)