Page 18 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21 22 23 24 25  >> Next  (605 Items)

1.  Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors
G. Chen, E.K. Huang, A.M. Hoang, S. Bogdanov, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 101, No. 21, p. 213501-1-- November 19, 2012 ...[Visit Journal]
By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω·cm² differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11 μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias. [reprint (PDF)]
 
1.  Relaxation kinetics in quantum cascade laser
S. Slivken, V. Litvinov, M. Razeghi, and J.R. Meyer
Journal of Applied Physics 85 (2)-- January 15, 1999 ...[Visit Journal]
Relaxation kinetics in a quantum cascade intersubband laser are investigated. Distribution functions and gain spectra of a three-subband double-quantum-well active region are obtained as a function of temperature and injection current. The potentially important role of the nonequilibrium phonons at lasing threshold is shown and discussed in details. It is shown that the threshold current is strongly dependent of the power dissipated in the active region in steady state. The numerical calculations for an 8.5 μm laser illustrate the general issues of relaxation kinetics in quantum cascade lasers. Temperature dependence of the threshold current is obtained in a good agreement with the experiments. [reprint (PDF)]
 
1.  High-power InGaAsP/GaAs 0.8 μm laser diodes and peculiarities of operational characteristics
J. Diaz, I. Eliashevich, X. He, H. Yi, L. Wang, E. Kolev, D. Garbuzov, and M. Razeghi
Applied Physics Letters 65 (8)-- August 22, 1994 ...[Visit Journal]
High-power operation of 3 W in pulse mode, 750 mW in quasi-continuous wave and 650 mW in continuous wave per uncoated facet from 100 μm aperture has been demonstrated for 1 mm long cavity InGaAsP/GaAs 808 nm laser diodes prepared by low-pressure metalorganic chemical vapor deposition. Threshold current density of 300 A/cm², differential efficiency of 1.1 W/A, T0=155 °C, transverse beam divergence of 27°, and less than 2 nm linewidth at 808 nm have been measured. No degradation has been observed after 1000 h of operation in a quasi-continuous wave regime. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
1.  High-responsivity GaInAs/InP Quantum Well Infrared Photodetectors Grown by Low-Pressure Metalorganic Chemical Vapor Deposition
M. Erdtmann, A. Matlis, C. Jelen, M. Razeghi, and G. Brown
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
We have studied the dependence of the well doping density in n-type GaInAs/InP quantum well IR photodetectors (QWIPs) grown by low-pressure metalorganic chemical vapor deposition. Three identical GaInAs/InP QWIP structures were grown with well sheet carrier densities of 1x1011 cm-2, 3x1011 cm-2, and 10x1011 cm-2; all three samples had very sharp spectral response at λ equals 9.0 μm. We find that there is a large sensitivity of responsivity, dark current, noise current, and detectivity with the well doping density. Measurements revealed that the lowest-doped samples had an extremely low responsivity relative to the doping concentration while the highest-doped sample had an excessively high dark current relative to doping. The middle-doped sample yielded the optimal results. This QWIP had a responsivity of 33.2 A/W and operated with a detectivity of 3.5x1010 cm·Hz½·W-1 at a bias of 0.75 V and temperature of 80 K. This responsivity is the highest value reported for any QWIP in the (lambda) equals 8-9 &mus;m range. Analysis is also presented explaining the dependence of the measured QWIP parameters to well doping density. [reprint (PDF)]
 
1.  Solar blind GaN p-i-n photodiodes
D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi
Applied Physics Letters 72 (25)-- June 22, 1998 ...[Visit Journal]
We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011  Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. [reprint (PDF)]
 
1.  Long Wavelength Type-II Photodiodes Operating at Room Temperature
H. Mohseni and M. Razeghi
IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  Etching of ZnO Towards the Development of ZnO Homostructure LEDs
K. Minder, F.H. Teherani, D. Rogers, C. Bayram, R. McClintock, P. Kung, and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Zinc Oxide Materials and Devices II, Vol. 6474, p. 64740Q-1-6-- January 29, 2007 ...[Visit Journal]
Although ZnO has recently gained much interest as an alternative to the III-Nitride material system, the development of ZnO based optoelectonic devices is still in its infancy. Significant material breakthroughs in p-type doping of ZnO thin films and improvements in crystal growth techniques have recently been achieved, making the development of optoelectonic devices possible. First, a survey of current ZnO processing methods is presented, followed by the results of our processing research. [reprint (PDF)]
 
1.  High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates
J. Jiang, C. Jelen, M. Razeghi and G.J. Brown
IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal]
In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)]
 
1.  Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal]
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)]
 
1.  Gain and recombination dynamics of quantum-dot infrared photodetecto
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- December 4, 2006 ...[Visit Journal][reprint (PDF)]
 
1.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007 ...[Visit Journal]
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). [reprint (PDF)]
 
1.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal]
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)]
 
1.  High quantum efficiency two color type-II InAs/GaSb n-i-p-p-i-n photodiodes
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, A. Hood, E.K. Huang, M. Razeghi, and M.Z. Tidrow
Applied Physics Letters, Vol. 92, No. 11, p. 111112-1-- March 17, 2008 ...[Visit Journal]
A n-i-p-p-i-n photodiode based on type-II InAs/GaSb superlattice was grown on a GaSb substrate. The two channels, with respective 50% of responsivity cutoff wavelengths at 7.7 and 10 µm, presented quantum efficiencies (QEs) of 47% and 39% at 77 K. The devices can be operated as two diodes for simultaneous detection or as a single n-i-p-p-i-n detector for sequential detection. In the latter configuration, the QEs at 5.3 and 8.5 µm were measured as high as 40% and 39% at 77 K. The optical cross-talk between the two channels could be reduced from 0.36 to 0.08 by applying a 50 mV bias. [reprint (PDF)]
 
1.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
1.  GaInAsP/InP 1.35 μm Double Heterostructure Laser Grown on Silicon Substrate by Metalorganic Chemical Vapor Deposition
K. Mobarhan, C. Jelen, E. Kolev, and M. Razeghi
Journal of Applied Physics 74 (1)-- July 1, 1993 ...[Visit Journal]
A 1.35 μm GaInAsP/InP double heterostructure laser has been grown on a Si substrate using low‐pressure metalorganic chemical vapor deposition. This was done without the use of a superlattice layer or a very thick InP buffer layer, which are used to prevent the dislocations from spreading into the active layer. Pulsed operation with output power of over 200 mW per facet was achieved at room temperature for broad area lasers with 20 μm width and 170 μm cavity length. The threshold current density of a 350 μm cavity length device was 9.8 kA/cm². The characteristic temperature was 66 K. [reprint (PDF)]
 
1.  High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier
S. Slivken, S. Sengupta, and M. Razeghi
Applied Physics Letters 107, 251101-- December 21, 2015 ...[Visit Journal]
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm−1) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm−1) and a maximum continuous power of 1.25 W. The output beam is shown to be nearly diffraction-limited, even at high amplifier current. [reprint (PDF)]
 
1.  Impact of scaling base thickness on the performance of heterojunction phototransistors
Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi
Nanotechnology 28, 10LT01-- February 2, 2017 ...[Visit Journal]
In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)]
 
1.  Substrate emission quantum cascade ring lasers with room temperature continuous wave operation
Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680N-- January 22, 2012 ...[Visit Journal]
We demonstrate room temperature, continuous wave operation of quantum cascade ring lasers around 5 μm with single mode operation up to 0.51 W output power. Single mode operation persists up to 0.4 W. Light is coupled out of the ring cavity through the substrate with a second order distributed feedback grating. The substrate emission scheme allows for epilayer-down bonding, which leads to room temperature continuous wave operation. The far field analysis indicates that the device operates in a high order mode. [reprint (PDF)]
 
1.  Advances in mid-infrared detection and imaging: a key issues review
Manijeh Razeghi and Binh-Minh Nguyen
Rep. Prog. Phys. 77 (2014) 082401-- August 4, 2014 ...[Visit Journal]
It has been over 200 years since people recognized the presence of infrared radiation, and developed methods to capture this signal. However, current material systems and technologies for infrared detections have not met the increasing demand for high performance infrared detectors/cameras, with each system having intrinsic drawbacks. Type-II InAs/GaSb superlattice has been recently considered as a promising candidate for the next generation of infrared detection and imaging. Type-II superlattice is a man-made crystal structure, consisting of multiple quantum wells placed next to each other in a controlled way such that adjacent quantum wells can interact. The interaction between multiple quantum wells offers an additional degree of freedom in tailoring the material's properties. Another advantage of type-II superlattice is the experimental benefit of inheriting previous research on material synthesis and device fabrication of bulk semiconductors. It is the combination of these two unique strengths of type-II superlattice—novel physics and easy manipulation—that has enabled unprecedented progress in recent years. In this review, we will describe historical development, and current status of type-II InAs/GaSb superlattice for advanced detection and imaging in the mid-infrared regime (λ = 3–5 µm). [reprint (PDF)]
 
1.  Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD
D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)]
 
1.  High power, continuous wave, quantum cascade ring laser
Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, D. Caffey, M. Pushkarsky, T. Day and M. Razeghi
Applied Physics Letters, Vol. 99, No. 26, p. 261104-1-- December 26, 2011 ...[Visit Journal]
We demonstrate a quantum cascade ring laser with high power room temperature continuous wave operation. A second order distributed feedback grating buried inside the waveguide provides both in-plane feedback and vertical power outcoupling. Total output power reaches 0.51 W at an emission wavelength around 4.85 μm. Single mode operation persists up to 0.4 W. The far field analysis indicates that the device operates in a high order mode. The magnetic and electric components of the ring-shaped lasing beam are in radial and azimuthal directions, respectively. [reprint (PDF)]
 
1.  Advanced Monolithic Quantum Well Infrared Photodetector Focal Plane Array Integrated with Silicon Readout Integrated Circuit
J. Jiang, S. Tsao, K. Mi, M. Razeghi, G.J. Brown, C. Jelen and M.Z. Tidrow
Infrared Physics and Technology, 46 (3)-- January 1, 2005 ...[Visit Journal]
Today, most infrared focal plane arrays (FPAs) utilize a hybrid scheme. To achieve higher device reliability and lower cost, monolithic FPAs with Si based readout integrated circuits (ROICs) are the trend of the future development. In this paper, two approaches for monolithic FPAs are proposed: double sided integration and selective epitaxy integration. For comparison, the fabrication process for hybrid quantum well infrared photodetectors (QWIP) FPAs are also described. Many problems, such as the growth of QWIPs on Si substrate and processing incompatibility between Si and III–V semiconductors, need to be solved before monolithic FPAs can be realized. Experimental work on GaInAs/InP QWIP-on-Si is given in this paper. A record high detectivity of 2.3×109 jones was obtained for one QWIP-on-Si detector at 77 K. [reprint (PDF)]
 
1.  Temperature insensitivity of the Al-free InGaAsP/GaAs lasers for λ = 808 and 908 nm
M. Razeghi, H. Yi, J. Diaz, S. Kim, and M. Erdtmann
SPIE Conference, San Jose, CA; Proceedings 3001-- February 12, 1997 ...[Visit Journal]
n this work, we present our recent achievements for the reliability of the Al-free lasers at high temperatures and high powers. Laser operations up to 30,000 hours were achieved without any degradation in the lasers characteristics from 7 randomly selected InGaAsP/GaAs diodes for λ = 808 nm. The test were performed for lasers without mirror-coating for optical power of 0.5 to 1 W CW at 50 approximately 60 °C. To the best of our knowledge, this is the first direct demonstration of the extremely high reliability of Al-free diodes operations at high powers and temperatures for periods of time much longer than practical need (approximately 3 years). The characteristics during the tests are discussed in detail. [reprint (PDF)]
 
1.  Gain and recombination dynamics in photodetectors made with quantum nanostructures: The quantum dot in a well and the quantum well
B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi
Physical Review B, Vol. 78, No. 11-- September 15, 2008 ...[Visit Journal]
We consider the problem of charge transport and recombination in semiconductor quantum well infrared photodetectors and quantum-dot-in-a-well infrared detectors. The photoexcited carrier relaxation is calculated using rigorous random-walk and diffusion methods, which take into account the finiteness of recombination cross sections, and if necessary the memory of the carrier generation point. In the present application, bias fields are high and it is sufficient to consider the drift limited regime. The photoconductive gain is discussed in a quantum-mechanical language, making it more transparent, especially with regard to understanding the bias and temperature dependence. Comparing experiment and theory, we can estimate the respective recombination times. The method developed here applies equally well to nanopillar structures, provided account is taken of changes in mobility and trapping. Finally, we also derive formulas for the photocurrent time decays, which in a clean system at high bias are sums of two exponentials. [reprint (PDF)]
 

Page 18 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21 22 23 24 25  >> Next  (605 Items)