Page 16 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20 21 22 23 24 25  >> Next  (605 Items)

1.  Ultraviolet Detectors for AstroPhysics Present and Future
M. Ulmer, M. Razeghi, and E. Bigan
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal]
Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)]
 
1.  Room temperature neagtive differential resistance characteristics of polar III-nitride resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 9, p. 092104-1-- August 30, 2010 ...[Visit Journal]
III-nitride resonant tunneling diodes (RTDs), consisting Al0.2Ga0.8N/GaN double-barrier (DB) active layers, were grown on c-plane lateral epitaxial overgrowth (LEO) GaN/sapphire and c-plane freestanding (FS) GaN. RTDs on both templates, fabricated into mesa diameters ranging from 5 to 35 μm, showed negative differential resistance (NDR) at room temperature. NDR characteristics (voltage and current density at NDR onset and current-peak-to-valley ratio) were analyzed and reported as a function of device size and substrate choice. Our results show that LEO RTDs perform as well as FS ones and DB active layer design and quality have been the bottlenecks in III-nitride RTDs. [reprint (PDF)]
 
1.  Cavity Length Effects of High-Temperature High-Power Continuous Wave Characteristics in Quantum-Cascade Lasers
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi
Applied Physics Letters, 83 (25)-- December 22, 2003 ...[Visit Journal]
We report the cavity-length dependent high-temperature high-power cw characteristics in λ=6 µm quantum-cascade lasers with a thick electroplated Au top contact layer. For a high-reflectivity (HR) coated 15 µm wide and 3 mm long laser, the cw operation is achieved up to 313 K (40 °C) with an output power of 17 mW. At 298 K, a very high cw output power of 213 mW is obtained for a HR coated 15 µm wide and 4 mm long laser. Thermal resistance is analyzed at temperatures above 283 K for HR coated lasers with different cavities. [reprint (PDF)]
 
1.  ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process
J.M. Jung, C.R. Kim, H. Ryu, M. Razeghi and W.G. Jung
Journal of Alloys and Compounds-- September 15, 2007 ...[Visit Journal]
The 3D type, flower-like ZnO nanostructures from particle to flower-like or chestnut bur are fabricated on the GaN epitaxial layer substrate through the simple-route hydrothermal process. Structural characterization was made for the ZnO 3D nanostructures synthesized in different pH ranging from 9.5 to 11.0. The growth model was proposed and discussed regarding the fabrication mechanism and morphology of ZnO 3D flower-like nanostructure. The flower-like ZnO is composed of many thin single crystals ZnO nanorods. Bigger and thicker ZnO structure is fabricated with the increase of pH in solution. The enhanced UV emission in the PL measurement and the spectra in the Raman spectroscopy for ZnO–GaN heterojunction material were discussed. [reprint (PDF)]
 
1.  Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111)
Y. Zhang, S. Gautier, C. Cho, E. Cicek, Z, Vashaei, R. McClintock, C. Bayram, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 102, No. 1, p. 011106-1-- January 7, 2013 ...[Visit Journal]
We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ∼ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ∼0.6 mW and ∼1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones. [reprint (PDF)]
 
1.  Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer
Akhil Rajan, David J Rogers, Cuong Ton-That, Liangchen Zhu, Matthew R Phillips, Suresh Sundaram, Simon Gautier, Tarik Moudakir, Youssef El-Gmili, Abdallah Ougazzaden, Vinod E Sandana, Ferechteh H Teherani, Philippe Bove, Kevin A Prior, Zakaria Djebbour, Ryan McClintock and Manijeh Razeghi
Journal of Physics D: Applied Physics, Volume 49, Number 31 -- July 15, 2016 ...[Visit Journal]
Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling. [reprint (PDF)]
 
1.  High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)]
 
1.  Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films
Yaobin Xu, Ji-hyeon Park, Zhenpeng Yao, Christopher Wolverton, Manijeh Razeghi, Jinsong Wu, and Vinayak P. Dravid
ACS Appl. Mater. Interfaces-- January 10, 2019 ...[Visit Journal]
It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different orientations, with an aberration-corrected scanning transmission electron microscope (STEM). Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4~5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high resolution electron microscopy (HREM) observation, complemented by the density functional theory (DFT) calculations. This study provides insights from the atomic scale and their implications for the design of functional thin film materials using epitaxial engineering.
 
1.  8-13 μm InAsSb heterojunction photodiode operating at near room temperature
J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi
Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal]
p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)]
 
1.  Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
G. Chen; B.-M. Nguyen; A.M. Hoang; E.K. Huang; S.R. Darvish; M. Razeghi
Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 826811 (January 20, 2012)-- January 20, 2012 ...[Visit Journal]
One of the biggest challenges of improving the electrical performance in Type II InAs/GaSb superlattice photodetector is suppressing the surface leakage. Surface leakage screens important bulk dark current mechanisms, and brings difficulty and uncertainty to the material optimization and bulk intrinsic parameters extraction such as carrier lifetime and mobility. Most of surface treatments were attempted beyond the mid-infrared (MWIR) regime because compared to the bulk performance, surface leakage in MWIR was generally considered to be a minor factor. In this work, we show that below 150K, surface leakage still strongly affects the electrical performance of the very high bulk performance p-π-M-n MWIR photon detectors. With gating technique, we can effectively eliminate the surface leakage in a controllable manner. At 110K, the dark current density of a 4.7 μm cut-off gated photon diode is more than 2 orders of magnitude lower than the current density in SiO2 passivated ungated diode. With a quantum efficiency of 48%, the specific detecivity of gated diodes attains 2.5 x 1014 cm·Hz1/2/W, which is 3.6 times higher than that of ungated diodes. [reprint (PDF)]
 
1.  Hybrid green LEDs with n-type ZnO substituted for N-type GaN in an inverted P-N junction
F. Hosseini Teherani; M. Razeghi; D.J. Rogers; Can Bayram; R. McClintock
LEOS Annual Meeting Conference Proceedings, LEOS '09. IEEE, [5343231] (2009) -- October 4, 2009 ...[Visit Journal]
Recently, the GaN and ZnO materials systems have attracted considerable attention because of their use in a broad range of emerging applications including light-emitting diodes (LEDs) and solar cells. GaN and ZnO are similar materials with direct wide bandgaps, wurtzite crystal structure, high thermal stability and comparable thermal expansion coefficients, which makes them well suited for heterojunction fabrication. Two important advantages of GaN over ZnO are the reliable p-type doping and the mature know-how for bandgap engineering. Thus GaN-based LEDs can be made to emit from the deep UV right into the green through alloying with Al and In, respectively. The performance is not identical at all wavelengths, however, and the performance of InGaN-based green LEDs is still relatively poor. [reprint (PDF)]
 
1.  Beam Steering in High-Power CW Quantum Cascade Lasers
W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005 ...[Visit Journal]
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. [reprint (PDF)]
 
1.  Transport properties in n-type InSb films grown by metalorganic chemical vapor deposition
S.N. Song, J.B. Ketterson, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
We have measured the temperature and magnetic field dependence of the Hall mobility and transverse magnetoresistance in n-type InSb films epitaxially grown on GaAs substrates by metalorganic chemical vapor deposition. The films show a giant magnetoresistance: e.g., at 240 K the resistivity increases over 20 times at a magnetic field of 5 T; the low field coefficient of resistivity at 77 K is as high as 47.5 μ·Ω· cm/G. The Hall mobility decreases with magnetic field and saturates at higher fields. By taking the interface carrier transport into account, the observed field dependence of the Hall mobility and magnetoresistance may be understood based on a two-layer model. [reprint (PDF)]
 
1.  Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature
S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu and M. Razeghi
Applied Physics Letters, Vol. 100, No. 26, p. 261112-1-- June 25, 2012 ...[Visit Journal]
A dual-section, single-mode quantum cascade laser is demonstrated in continuous wave at room temperature with up to 114 nm (50 cm−1) of tuning near a wavelength of 4.8 μm. Power above 100 mW is demonstrated, with a mean side mode suppression ratio of 24 dB. By changing the grating period, 270 nm (120 cm−1) of gap-free electrical tuning for a single gain medium has been realized. [reprint (PDF)]
 
1.  Room temperature operation of InxGa1-xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD
D. H. Wu, Y. Y. Zhang, and M. Razeghi
Applied Physics Letters 112, 111103-- March 14, 2018 ...[Visit Journal]
We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2, peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with calculated specific detectivity of 2.4×109 cm.Hz1/2/W at 3.81 μm. [reprint (PDF)]
 
1.  Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi
Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008 ...[Visit Journal]
We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. [reprint (PDF)]
 
1.  Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K
Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi
APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal]
We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)]
 
1.  Optical losses of Al-free lasers for λ = 0.808 and 0.98 μm
H. Yi, J. Diaz, B. Lane, and M. Razeghi
Applied Physics Letters 69 (20)-- November 11, 1996 ...[Visit Journal]
In this work, we study the origin of the optical losses in Al‐free InGaAsP/GaAs (λ=0.808 μm) and InGaAs/GaAs/InGaP (λ=0.980 μm) lasers. Theoretical modeling and the experimental results indicate that the scattering of the laser beam by refractive index fluctuation in the alloys is the dominant loss in our lasers, and the loss due to the free‐carrier absorption and scattering by interface roughness are negligible. [reprint (PDF)]
 
1.  High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition
J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi
Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal]
A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was achieved at −0.9 V bias [reprint (PDF)]
 
1.  High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal]
Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)]
 
1.  Temperature dependence of threshold current density Jth and differential efficiency of High Power InGaAsP/GaAs ( λ = 0.8 μm) lasers
H. Yi, J. Diaz, I. Eliashevich, M. Stanton, M. Erdtmann, X. He, L. Wang, and M. Razeghi
Applied Physics Letters 66 (3)-- January 16, 1995 ...[Visit Journal]
An experimental and theoretical study on temperature dependence of the threshold current density Jth and differential efficiency ηd for the InGaAsP/GaAs laser diodes emitting at λ=0.8 μm was performed. Threshold current density Jth increases and differential efficiency ηd decreases as temperature is increased mainly because of thermal broadening of the gain spectrum. However, the measured temperature dependence of Jth and ηd could not be explained when only this effect was considered. In this letter, the temperature dependence of momentum relaxation rate ℏ/τ of carriers was investigated by performing the photoluminescence study. At high temperature, increase of the momentum relaxation rate ℏ/τ leads to reduction of the gain and mobility and increase of the optical loss, causing higher Jth and lower ηd as experimentally observed. The resulting theoretical model provides a good explanation for the mechanism of the increase of Jth and decrease of ηd. [reprint (PDF)]
 
1.  Intrinsic AlGaN photodetectors for the entire compositional range
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal]
AlxGa1-xN ultraviolet photoconductors with cut- off wavelengths from 365 nm to 200 nm have been fabricated and characterized. Various characteristics of the devices, such as photoresponse, voltage-dependent responsivity, frequency-dependent responsivity and noise spectral density, were measured and cross-referenced with optical, electrical and structural characteristics of the material to provide information about the mechanisms taking place during detection. The maximum detectivity reached 5.5 X 108 cm·Hz½/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1-xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 msec. The frequency-dependent noise-spectrum shows that it is dominated by Johnson-noise at high frequencies for low Al-composition samples. [reprint (PDF)]
 
1.  Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range
H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)]
 
1.  High Optical Response in Forward Biased (In,Ga)N-GaN Multiquantum-Well Diodes Under Barrier Illumination
J.L. Pau, R. McClintock, C. Bayram, K. Minder, D. Silversmith and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 4, p. 346-353.-- April 1, 2008 ...[Visit Journal]
The authors report on the current–voltage (I–V) characteristic under forward biases obtained in low leakage, small size p-(In,Ga)N–GaN-n multiquantum well diodes. Under barrier illumination, the devices present a high optical response with capabilities to detect optical powers in the pW range without further amplification. This response is attributed to the screening of the internal electric fields. Recombination times of a few seconds are found to be associated to this mechanism. Moreover, a step-like feature is found in the I– V characteristic before the diode turn-on voltage. Our model proposes tunneling current through the multi-quantum-well structure as responsible of this feature. Fast modulation of the tunneling effect under barrier illumination is used to evaluate the detection of low photon fluxes. [reprint (PDF)]
 
1.  Second harmonic generation in hexagonal silicon carbide
P.M. Lundquist, W.P. Lin, G.K. Wong, M. Razeghi, and J.B. Ketterson
Applied Physics Letters 66 (15)-- April 10, 1995 ...[Visit Journal]
We report optical second harmonic generation measurements in single crystal α-SiC of polytype 6H. The angular dependence of second harmonic intensity was consistent with two independent nonvanishing second order susceptibility components, as expected for a crystal with hexagonal symmetry. For the fundamental wavelength of 1.064 μm the magnitudes of the two components were determined to be χzzz(2)=±1.2×10−7 and χzxx(2)=∓1.2×10−8 esu. The corresponding linear electro‐optic coefficient computed from this value is rzzz=±100 pm/V. The wavelength dependence of the nonlinear susceptibility was examined for second harmonic wavelengths between the bandgap (400 nm) and the red (700 nm), and was found to be relatively uniform over this region. The refractory nature of this compound and its large nonlinear optical coefficients make it an attractive candidate for high power nonlinear optical waveguide applications. [reprint (PDF)]
 

Page 16 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20 21 22 23 24 25  >> Next  (605 Items)