Page 14 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14  15 16 17 18 19 20 21 22 23 24 25  >> Next  (605 Items)

1.  High brightness angled cavity quantum cascade lasers
D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi
Applied Physics Letters 106, 091105-- March 6, 2015 ...[Visit Journal]
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. [reprint (PDF)]
 
1.  Transport and Photodetection in Self-Assembled Semiconductor Quantum Dots
M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar
Nanotechnology, 16-- January 7, 2005 ...[Visit Journal]
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. [reprint (PDF)]
 
1.  Highly temperature insensitive quantum cascade lasers
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal]
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)]
 
1.  Improved performance of IR photodetectors with 3D gap engineering
J. Piotrowski and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal]
The ultimate signal-to-noise performance of the semiconductor photodetector is limited by the statistical fluctuations of the thermal generation and recombination rates in photodetector material. Cooling is an effective but impractical way of suppression of the thermal processes. The performance of uncooled detectors can be improved by minimizing the thermal generation and recombination rates and reducing the actual volume of photodetector. This can be realized in 3D heterostructure devices. In these devices, the incident radiation is absorbed in small regions of narrow gap semiconductor, buried in wide gap volume and supplied with wide gap electric contacts and radiation concentrators. The practical near room-temperature 1 - 12 μm IR heterostructure photodetectors are reported. The devices are based on variable gap Hg1-xCdxTe. The 3D heterostructures have been obtained by Isothermal Vapor Growth Epitaxy in a reusable growth system which enables in situ doping during growth with foreign impurities. Ion milling was extensively used in preparation of the devices. Monolithic optical immersion has been applied for further improvement of performance. The 3D heterostructure devices exhibit performance exceeding that of conventional photodetectors. [reprint (PDF)]
 
1.  Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal]
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)]
 
1.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (13)-- April 29, 2004 ...[Visit Journal]
We report a demonstration of an infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. The middle-wavelength infrared quantum-dot infrared photodetector (QDIP) structure was grown via low-pressure metal organic chemical vapor deposition. A detectivity of 3.6×1010 cm·Hz½/W was achieved at T = 95 K and a bias of –1.4 V. The background limited temperature of our QDIP was 140 K with a 45° field of view. A 256×256 detector array was fabricated with dry etching, and hybridized to a Litton readout chip by indium bumps. Thermal imaging was achieved at temperatures up to 120 K. At T = 77 K, the noise equivalent temperature difference was measured as 0.509 K with a 300 K background and f/2.3 optics. [reprint (PDF)]
 
1.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007 ...[Visit Journal]
This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. [reprint (PDF)]
 
1.  Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes
D. Hoffman, A. Hood, F. Fuchs and M. Razeghi
Journal of Applied Physics 99-- February 15, 2006 ...[Visit Journal]
The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. [reprint (PDF)]
 
1.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
1.  Optimizing facet coating of quantum cascade lasers for low power consumption
Y. Bai, S.R. Darvish, N. Bandyopadhyay, S. Slivken and M. Razeghi
Journal of Applied Physics, Vol. 109, No. 5, p. 053103-1-- March 1, 2011 ...[Visit Journal]
Typical high power consumption (∼10 W) of mid-infrared quantum cascade lasers (QCLs) has been a serious limitation for applications in battery powered systems. A partial high-reflection (PHR) coating technique is introduced for power downscaling with shorter cavity lengths. The PHR coating consists of a double layer dielectric of SiO2 and Ge. With this technique, a 4.6 μm QCL with an ultra low threshold power consumption of less than a watt (0.83 W) is demonstrated in room temperature continuous wave operation. At 25°C, the maximum output power and wall plug efficiency are 192 mW and 8.6%, respectively. [reprint (PDF)]
 
1.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
1.  High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 μm
D. Wu, B. Lane, H. Mohseni, J. Diaz and M. Razeghi
Applied Physics Letters 74 (9)-- March 1, 1999 ...[Visit Journal]
Midinfrared lasers with an asymmetrical InPAsSb/InAsSb/AlAsSb double heterostructure are reported. Using the asymmetrical double heterostructure, p- and n-cladding layers are separately optimized; high energy-gap AlAsSb (Eg ≈ 1.5 eV) for the p-type cladding layer to reduce the leakage current, and thus to increase To, and low energy-gap InPAsSb (Eg ≈ 0.5 eV) for the n-cladding layer to have low turn-on voltage. 100-μm-width broad-area lasers with 1000 μm cavity length exhibited peak output powers of 1.88 W in pulse and 350 mW in continuous wave modes per two facets at T=80 K with To of 54 K and turn-on voltage of 0.36 V. Maximum peak output powers up to 6.7 W were obtained from a laser bar of total aperture of 400 μm width and cavity length of 1000 μm, with a differential efficiency of 34% and far-field beam divergence narrower than 40° at 80 K. [reprint (PDF)]
 
1.  Solar-Blind Deep UV Avalanche Photodetectors Using Reduced Area Epitaxy
Lakshay Gautam , Junhee Lee, Michael Richards, and Manijeh Razeghi ,
Lakshay Gautam, Manijeh Razeghi, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 6, 10.1109/JQE.2023.3325254 ...[Visit Journal]
We report high gain avalanche photodetectors operating in the deep UV wavelength regime. The high gain was leveraged through reduced area epitaxy by patterning AlN on Sapphire substrate. This helps in a substantial reduction of crack formation due to overgrowth on individually isolated AlN mesas. Reproducible gain on the order of 105 was reported for multiple diodes in different areas of 320 × 256 focal plane array.
 
1.  Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes
A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi
Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal]
The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)]
 
1.  Microstructural compositional, and optical characterization of GaN grown by metal organic vapor phase epitaxy on ZnO epilayers
D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, F. Jomard, M. Molinari, M. Troyon, D. McGrouther, J.N. Chapman, M. Razeghi and A. Ougazzaden
Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1655-1657-- May 29, 2009 ...[Visit Journal]
This article presents the results of microstructural, compositional, and optical characterization of GaN films grown on ZnO buffered c-sapphire substrates. Transmission electron microscopy showed epitaxy between the GaN and the ZnO, no degradation of the ZnO buffer layer, and no evidence of any interfacial compounds. Secondary ion mass spectroscopy revealed negligible Zn signal in the GaN layer away from the GaN/ZnO interface. After chemical removal of the ZnO, room temperature (RT) cathodoluminescence spectra had a single main peak centered at ~ 368 nm (~3.37 eV), which was indexed as near-band-edge (NBE) emission from the GaN layer. There was no evidence of the ZnO NBE peak, centered at ~379 nm (~3.28 eV), which had been observed in RT photoluminescence spectra prior to removal of the ZnO. [reprint (PDF)]
 
1.  GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update
P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. [reprint (PDF)]
 
1.  Negative luminescence of InAs/GaSb superlattice photodiodes
F. Fuchs, D. Hoffman, A. Gin, A. Hood, Y. Wei, and M. Razeghi
Phys. Stat. Sol. C 3 (3)-- February 22, 2006 ...[Visit Journal]
The emission behaviour of InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 μm. With a radiometric calibration of the experimental set-up the internal quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The quantitative analysis of the internal quantum efficiency of the non-equilibrium radiation enables the determination of the Auger coefficient. [reprint (PDF)]
 
1.  Monolithic Integration of GaInAs/InP Quantum Well Infrared Photodetectors on Si Substrate
M. Erdtmann and M. Razeghi
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
Using low-pressure metalorganic chemical vapor deposition, we have grown GaInAs/InP QWIP structures on GaAs-coated Si substrate. First, the procedure to optimize the epitaxy of the InP buffer layer on Si substrate is given. Excellent crystallinity and a mirror-like surface morphology were obtained by using both a two-step growth process at the beginning of the InP buffer layer growth and several series of thermal cycle annealing throughout the InP buffer layer growth. Second, results of fabricated GaInAs/InP QWIPs on Si substrate are presented. At a temperature of 80 K, the peak response wavelength occurs at 7.4 μm. The responsivities of QWIPs on both Si and InP substrates with identical structures are equal up to biases of 1.5 V. At a bias of 3 V, the responsivity of the QWIPs on Si substrate is 1.0 A/W. [reprint (PDF)]
 
1.  High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications
S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal]
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)]
 
1.  UV photodetectors based on AlxGa1-xN grown by MOCVD
A. Saxler, D. Walker, X. Zhang, P. Kung, J. Xu, and M. Razeghi
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
Metalorganic chemical vapor deposition was used to deposit AlxGa1-xN active layers with varying aluminum compositions on basal plane sapphire substrate. AlxGa1-xN (x < 0.5) ultraviolet photodetectors have been fabricated and characterized with cut-off wavelengths as short as 260 nm. Carrier lifetimes on the order of 10 milliseconds were estimated from frequency dependent measurements of the responsivity. [reprint (PDF)]
 
1.  High Quality Aluminum Nitride Epitaxial Layers Grown on Sapphire Substrates
A. Saxler, P. Kung, C.J. Sun, E. Bigan and M. Razeghi
Applied Physics Letters 64 (3)-- January 17, 1994 ...[Visit Journal]
In this letter we report the growth of high quality AlN epitaxial layers on sapphire substrates. The AlN grown on (00·1) sapphire exhibited a better crystalline quality than that grown on (01·2) sapphire. An x-ray rocking curve of AlN on (00·1) Al2O3 yielded a full width at half-maximum of 97.2 arcsec, which is the narrowest value reported to our knowledge. The AlN peak on (01·2) Al2O3 was about 30 times wider. The absorption edge measured by ultraviolet transmission spectroscopy for AlN grown on (00·1) Al2O3 was about 197 nm. [reprint (PDF)]
 
1.  Recent advances of terahertz quantum cascade lasers
Manijeh Razeghi
Proc. SPIE 8119, Terahertz Emitters, Receivers, and Applications II, 81190D (September 07, 2011)-- November 7, 2011 ...[Visit Journal]
In the past decade, tremendous development has been made in GaAs/AlGaAs based THz quantum cascade laser (QCLs), however, the maximum operating temperature is still limited below 200 K (without magnetic field). THz QCL based on difference frequency generation (DFG) represents a viable technology for room temperature operation. Recently, we have demonstrated room temperature THz emission (∼ 4 THz) up to 8.5 μW with a power conversion efficiency of 10 μW/W². A dual-period distributed feedback grating is used to filter the mid-infrared spectra in favor of an extremely narrow THz linewidth of 6.6 GHz. [reprint (PDF)]
 
1.  Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection
B.M. Nguyen, S. Abdollahi Pour, S. Bogdanov and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760825-1-- January 22, 2010 ...[Visit Journal]
The bandstructure tunability of Type-II antimonide-based superlattices has been significantly enhanced since the introduction of the M-structure superlattice, resulting in significant improvements of Type-II superlattice infrared detectors. By using M-structure, we developed the pMp design, a novel infrared photodetector architecture that inherits the advantages of traditional photoconductive and photovoltaic devices. This minority electron unipolar device consists of an M-structure barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. Applied for the very long wavelength detection, at 77K, a 14µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W at 50mV bias and the associated shot-noise detectivity of 4x1010 Jones. [reprint (PDF)]
 
1.  The Molecular Beam Epitaxial Growth of InSb on (111) GaAs
E. Michel, J. Kim, J. Xu, S. Javadpour, I. Ferguson, and M. Razeghi
Applied Physics Letters 69 (2)-- July 8, 1996 ...[Visit Journal]
The molecular beam epitaxial growth of InSb on (111)B GaAs has been investigated. It was found that for a given Sb/In ratio, a higher growth temperature was required for the growth of InSb on (111)B GaAs compared to that on (001) GaAs. This difference has been attributed to the bonding characteristics of the (111)B and (001) surface. Once growth had been optimized, it was found that the material characteristics of (111)B InSb were almost identical to that of (001) InSb, i.e., independent of orientation. For example, the x-ray full width at half-maximum and 300 K mobility had the same absolute values for (111) InSb and (001)InSb and followed the same dependence with the sample thickness. Te was found to be a well-behaved n-type dopant for (111)B InSb. [reprint (PDF)]
 
1.  High quality LEO growth and characterization of GaN films on Al2O3 and Si substrates
M. Razeghi, P. Kung, D. Walker, M. Hamilton, and J. Diaz
SPIE International Conference on Solid State Crystals, Zakopane, Poland; Proceedings 3725-- October 12, 1998 ...[Visit Journal]
We report the lateral epitaxial overgrowth (LEO) of GaN films on (00.1) Al2O3 and (111) Si substrates by metalorganic chemical vapor deposition. The LEO on Si substrates was possible after achieving quasi monocrystalline GaN template films on (111) Si substrates. X-ray diffraction, photoluminescence, scanning electron microscopy and atomic force microscopy were used to assess the quality of the LEO films. Lateral growth rates more than 5 times as high as vertical growth rates were achieved for both LEO growths of GaN on sapphire and silicon substrates. [reprint (PDF)]
 

Page 14 of 25:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14  15 16 17 18 19 20 21 22 23 24 25  >> Next  (605 Items)